The AC100's RTC side has 3 clock outputs on external pins, which can provide a clock signal to the SoC or other modules, such as WiFi or GSM modules. Support this with a custom clk driver integrated with the rtc driver. Signed-off-by: Chen-Yu Tsai <wens@xxxxxxxx> --- Changes since v2: none Changes since v1: none --- drivers/rtc/rtc-ac100.c | 319 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 319 insertions(+) diff --git a/drivers/rtc/rtc-ac100.c b/drivers/rtc/rtc-ac100.c index 752bc0771d71..ef5bf102d2fc 100644 --- a/drivers/rtc/rtc-ac100.c +++ b/drivers/rtc/rtc-ac100.c @@ -16,6 +16,7 @@ */ #include <linux/bcd.h> +#include <linux/clk-provider.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/kernel.h> @@ -32,6 +33,15 @@ /* Control register */ #define AC100_RTC_CTRL_24HOUR BIT(0) +/* Clock output register bits */ +#define AC100_CLK32K_PRE_DIV_SHIFT 5 +#define AC100_CLK32K_PRE_DIV_WIDTH 3 +#define AC100_CLK32K_MUX_SHIFT 4 +#define AC100_CLK32K_MUX_WIDTH 1 +#define AC100_CLK32K_DIV_SHIFT 1 +#define AC100_CLK32K_DIV_WIDTH 3 +#define AC100_CLK32K_EN BIT(0) + /* RTC */ #define AC100_RTC_SEC_MASK GENMASK(6, 0) #define AC100_RTC_MIN_MASK GENMASK(6, 0) @@ -68,6 +78,26 @@ #define AC100_YEAR_MAX 2069 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900) +struct ac100_clk32k { + struct clk_hw hw; + struct regmap *regmap; + u8 offset; +}; + +#define to_ac100_clk32k(_hw) container_of(_hw, struct ac100_clk32k, hw) + +#define AC100_RTC_32K_NAME "ac100-rtc-32k" +#define AC100_RTC_32K_RATE 32768 +#define AC100_ADDA_4M_NAME "ac100-adda-4M" +#define AC100_ADDA_4M_RATE 4000000 +#define AC100_CLK32K_NUM 3 + +static const char * const ac100_clk32k_names[] = { + "ac100-clk32k-ap", + "ac100-clk32k-bb", + "ac100-clk32k-md", +}; + struct ac100_rtc_dev { struct rtc_device *rtc; struct device *dev; @@ -75,8 +105,283 @@ struct ac100_rtc_dev { struct mutex mutex; int irq; unsigned long alarm; + + struct clk_hw *rtc_32k_clk; + struct clk_hw *adda_4M_clk; + struct ac100_clk32k clks[AC100_CLK32K_NUM]; + struct clk_hw_onecell_data *clk_data; +}; + +/** + * Clock controls for 3 clock output pins + */ + +static const struct clk_div_table ac100_clk32k_prediv[] = { + { .val = 0, .div = 1 }, + { .val = 1, .div = 2 }, + { .val = 2, .div = 4 }, + { .val = 3, .div = 8 }, + { .val = 4, .div = 16 }, + { .val = 5, .div = 32 }, + { .val = 6, .div = 64 }, + { .val = 7, .div = 122 }, + { }, +}; + +/* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */ +static unsigned long ac100_clk32k_recalc_rate(struct clk_hw *hw, + unsigned long prate) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + unsigned int reg, div; + + regmap_read(clk->regmap, clk->offset, ®); + + /* Handle pre-divider first */ + if (prate != AC100_RTC_32K_RATE) { + div = (reg >> AC100_CLK32K_PRE_DIV_SHIFT) & + ((1 << AC100_CLK32K_PRE_DIV_WIDTH) - 1); + prate = divider_recalc_rate(hw, prate, div, + ac100_clk32k_prediv, 0); + } + + div = (reg >> AC100_CLK32K_DIV_SHIFT) & + (BIT(AC100_CLK32K_DIV_WIDTH) - 1); + return divider_recalc_rate(hw, prate, div, NULL, + CLK_DIVIDER_POWER_OF_TWO); +} + +static long ac100_clk32k_round_rate(struct clk_hw *hw, unsigned long rate, + unsigned long prate) +{ + unsigned long best_rate = 0, tmp_rate, tmp_prate; + int i; + + if (prate == AC100_RTC_32K_RATE) + return divider_round_rate(hw, rate, &prate, NULL, + AC100_CLK32K_DIV_WIDTH, + CLK_DIVIDER_POWER_OF_TWO); + + for (i = 0; ac100_clk32k_prediv[i].div; i++) { + tmp_prate = DIV_ROUND_UP(prate, ac100_clk32k_prediv[i].val); + tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL, + AC100_CLK32K_DIV_WIDTH, + CLK_DIVIDER_POWER_OF_TWO); + + if (tmp_rate > rate) + continue; + if (rate - tmp_rate < best_rate - tmp_rate) + best_rate = tmp_rate; + } + + return best_rate; +} + +static int ac100_clk32k_determine_rate(struct clk_hw *hw, + struct clk_rate_request *req) +{ + struct clk_hw *best_parent; + unsigned long best = 0; + int i, num_parents = clk_hw_get_num_parents(hw); + + for (i = 0; i < num_parents; i++) { + struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i); + unsigned long tmp, prate = clk_hw_get_rate(parent); + + tmp = ac100_clk32k_round_rate(hw, req->rate, prate); + + if (tmp > req->rate) + continue; + if (req->rate - tmp < req->rate - best) { + best = tmp; + best_parent = parent; + } + } + + if (!best) + return -EINVAL; + + req->best_parent_hw = best_parent; + req->best_parent_rate = best; + req->rate = best; + + return 0; +} + +static int ac100_clk32k_set_rate(struct clk_hw *hw, unsigned long rate, + unsigned long prate) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + int div = 0, pre_div = 0; + + do { + div = divider_get_val(rate * ac100_clk32k_prediv[pre_div].div, + prate, NULL, AC100_CLK32K_DIV_WIDTH, + CLK_DIVIDER_POWER_OF_TWO); + if (div >= 0) + break; + } while (prate == AC100_ADDA_4M_RATE && + ac100_clk32k_prediv[++pre_div].div); + + if (div < 0) + return div; + + pre_div = ac100_clk32k_prediv[pre_div].val; + + regmap_update_bits(clk->regmap, clk->offset, + ((1 << AC100_CLK32K_DIV_WIDTH) - 1) << AC100_CLK32K_DIV_SHIFT | + ((1 << AC100_CLK32K_PRE_DIV_WIDTH) - 1) << AC100_CLK32K_PRE_DIV_SHIFT, + (div - 1) << AC100_CLK32K_DIV_SHIFT | + (pre_div - 1) << AC100_CLK32K_PRE_DIV_SHIFT); + + return 0; +} + +static int ac100_clk32k_prepare(struct clk_hw *hw) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + + return regmap_update_bits(clk->regmap, clk->offset, AC100_CLK32K_EN, + AC100_CLK32K_EN); +} + +static void ac100_clk32k_unprepare(struct clk_hw *hw) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + + regmap_update_bits(clk->regmap, clk->offset, AC100_CLK32K_EN, 0); +} + +static int ac100_clk32k_is_prepared(struct clk_hw *hw) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + unsigned int reg; + + regmap_read(clk->regmap, clk->offset, ®); + + return reg & AC100_CLK32K_EN; +} + +static u8 ac100_clk32k_get_parent(struct clk_hw *hw) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + unsigned int reg; + + regmap_read(clk->regmap, clk->offset, ®); + + return (reg >> AC100_CLK32K_MUX_SHIFT) & 0x1; +} + +static int ac100_clk32k_set_parent(struct clk_hw *hw, u8 index) +{ + struct ac100_clk32k *clk = to_ac100_clk32k(hw); + + return regmap_update_bits(clk->regmap, clk->offset, + BIT(AC100_CLK32K_MUX_SHIFT), + index ? BIT(AC100_CLK32K_MUX_SHIFT) : 0); +} + +static const struct clk_ops ac100_clk32k_ops = { + .prepare = ac100_clk32k_prepare, + .unprepare = ac100_clk32k_unprepare, + .is_prepared = ac100_clk32k_is_prepared, + .recalc_rate = ac100_clk32k_recalc_rate, + .determine_rate = ac100_clk32k_determine_rate, + .get_parent = ac100_clk32k_get_parent, + .set_parent = ac100_clk32k_set_parent, + .set_rate = ac100_clk32k_set_rate, }; +static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip) +{ + struct device_node *np = chip->dev->of_node; + const char *parents[2] = {AC100_RTC_32K_NAME, AC100_ADDA_4M_NAME}; + int i, ret; + + chip->clk_data = devm_kzalloc(chip->dev, sizeof(*chip->clk_data) + + sizeof(*chip->clk_data->hws) * + AC100_CLK32K_NUM, + GFP_KERNEL); + if (!chip->clk_data) + return -ENOMEM; + + chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev, + AC100_RTC_32K_NAME, + NULL, 0, + AC100_RTC_32K_RATE); + if (IS_ERR(chip->rtc_32k_clk)) { + ret = PTR_ERR(chip->rtc_32k_clk); + dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n", + ret); + return ret; + } + + /* + * The ADDA 4 MHz clock is from the codec side of the AC100, + * which is likely a different power domain. However, boards + * always have both sides powered on, so it is impossible to + * test this. + */ + chip->adda_4M_clk = clk_hw_register_fixed_rate(chip->dev, + AC100_ADDA_4M_NAME, + NULL, 0, + AC100_ADDA_4M_RATE); + if (IS_ERR(chip->adda_4M_clk)) { + ret = PTR_ERR(chip->adda_4M_clk); + dev_err(chip->dev, "Failed to register ADDA-4M clock: %d\n", + ret); + goto err_unregister_rtc_32k; + } + + for (i = 0; i < AC100_CLK32K_NUM; i++) { + struct ac100_clk32k *clk = &chip->clks[i]; + struct clk_init_data init = { + .name = ac100_clk32k_names[i], + .ops = &ac100_clk32k_ops, + .parent_names = parents, + .num_parents = ARRAY_SIZE(parents), + .flags = 0, + }; + + clk->regmap = chip->regmap; + clk->offset = AC100_CLK32K_OUT_CTRL1 + i; + clk->hw.init = &init; + + ret = devm_clk_hw_register(chip->dev, &clk->hw); + if (ret) { + dev_err(chip->dev, "Failed to register clk '%s': %d\n", + init.name, ret); + goto err_unregister_adda_4M; + } + + chip->clk_data->hws[i] = &clk->hw; + } + + chip->clk_data->num = i; + ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data); + if (ret) + goto err_unregister_adda_4M; + + return 0; + +err_unregister_adda_4M: + clk_unregister_fixed_rate(chip->adda_4M_clk->clk); +err_unregister_rtc_32k: + clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); + + return ret; +} + +static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip) +{ + of_clk_del_provider(chip->dev->of_node); + clk_unregister_fixed_rate(chip->adda_4M_clk->clk); + clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); +} + +/** + * RTC related bits + */ static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm) { struct ac100_rtc_dev *chip = dev_get_drvdata(dev); @@ -347,13 +652,27 @@ static int ac100_rtc_probe(struct platform_device *pdev) return PTR_ERR(chip->rtc); } + ret = ac100_rtc_register_clks(chip); + if (ret) + return ret; + dev_info(&pdev->dev, "RTC enabled\n"); return 0; } +static int ac100_rtc_remove(struct platform_device *pdev) +{ + struct ac100_rtc_dev *chip = platform_get_drvdata(pdev); + + ac100_rtc_unregister_clks(chip); + + return 0; +} + static struct platform_driver ac100_rtc_driver = { .probe = ac100_rtc_probe, + .remove = ac100_rtc_remove, .driver = { .name = "ac100-rtc", }, -- 2.8.1 -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html