On Fri, Feb 07, 2025 at 09:40:52PM +0100, Andrea Righi wrote: > Using a single global idle mask can lead to inefficiencies and a lot of > stress on the cache coherency protocol on large systems with multiple > NUMA nodes, since all the CPUs can create a really intense read/write > activity on the single global cpumask. Can you put your perf numbers here too? > Therefore, split the global cpumask into multiple per-NUMA node cpumasks > to improve scalability and performance on large systems. > > The concept is that each cpumask will track only the idle CPUs within > its corresponding NUMA node, treating CPUs in other NUMA nodes as busy. > In this way concurrent access to the idle cpumask will be restricted > within each NUMA node. > > The split of multiple per-node idle cpumasks can be controlled using the > SCX_OPS_BUILTIN_IDLE_PER_NODE flag. > > By default SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled and a global > host-wide idle cpumask is used, maintaining the previous behavior. > > NOTE: if a scheduler explicitly enables the per-node idle cpumasks (via > SCX_OPS_BUILTIN_IDLE_PER_NODE), scx_bpf_get_idle_cpu/smtmask() will > trigger an scx error, since there are no system-wide cpumasks. > > Signed-off-by: Andrea Righi <arighi@xxxxxxxxxx> > --- > kernel/sched/ext_idle.c | 242 ++++++++++++++++++++++++++++++++-------- > kernel/sched/ext_idle.h | 11 +- > 2 files changed, 203 insertions(+), 50 deletions(-) > > diff --git a/kernel/sched/ext_idle.c b/kernel/sched/ext_idle.c > index a3f2b00903ac2..4b90ec9018c1a 100644 > --- a/kernel/sched/ext_idle.c > +++ b/kernel/sched/ext_idle.c > @@ -18,25 +18,88 @@ DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); > DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node); > > #ifdef CONFIG_SMP > -#ifdef CONFIG_CPUMASK_OFFSTACK > -#define CL_ALIGNED_IF_ONSTACK > -#else > -#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp > -#endif > - > /* Enable/disable LLC aware optimizations */ > DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); > > /* Enable/disable NUMA aware optimizations */ > DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); > > -static struct { > +/* > + * cpumasks to track idle CPUs within each NUMA node. > + * > + * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask > + * from is used to track all the idle CPUs in the system. > + */ > +struct idle_cpus { > cpumask_var_t cpu; > cpumask_var_t smt; > -} idle_masks CL_ALIGNED_IF_ONSTACK; > +}; > + > +/* > + * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE > + * is not enabled). > + */ > +static struct idle_cpus scx_idle_global_masks; > + > +/* > + * Per-node idle cpumasks. > + */ > +static struct idle_cpus **scx_idle_node_masks; > + > +/* > + * Initialize per-node idle cpumasks. > + * > + * In case of a single NUMA node or if NUMA support is disabled, only a > + * single global host-wide cpumask will be initialized. > + */ > +void scx_idle_init_masks(void) > +{ > + int node; > + > + /* Allocate global idle cpumasks */ > + BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL)); > + BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL)); > + > + /* Allocate per-node idle cpumasks */ > + scx_idle_node_masks = kcalloc(num_possible_nodes(), > + sizeof(*scx_idle_node_masks), GFP_KERNEL); > + BUG_ON(!scx_idle_node_masks); > + > + for_each_node(node) { > + scx_idle_node_masks[node] = kzalloc_node(sizeof(**scx_idle_node_masks), > + GFP_KERNEL, node); > + BUG_ON(!scx_idle_node_masks[node]); > + > + BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->cpu, GFP_KERNEL, node)); > + BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->smt, GFP_KERNEL, node)); > + } > +} > + > +/* > + * Return the idle masks associated to a target @node. > + */ > +static struct idle_cpus *idle_cpumask(int node) > +{ > + return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node]; > +} > + > +/* > + * Return the node id associated to a target idle CPU (used to determine > + * the proper idle cpumask). > + */ > +static int idle_cpu_to_node(int cpu) > +{ > + if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) > + return NUMA_NO_NODE; > + > + return cpu_to_node(cpu); > +} > > bool scx_idle_test_and_clear_cpu(int cpu) > { > + int node = idle_cpu_to_node(cpu); > + struct cpumask *idle_cpus = idle_cpumask(node)->cpu; > + > #ifdef CONFIG_SCHED_SMT > /* > * SMT mask should be cleared whether we can claim @cpu or not. The SMT > @@ -45,33 +108,38 @@ bool scx_idle_test_and_clear_cpu(int cpu) > */ > if (sched_smt_active()) { > const struct cpumask *smt = cpu_smt_mask(cpu); > + struct cpumask *idle_smts = idle_cpumask(node)->smt; > > /* > * If offline, @cpu is not its own sibling and > * scx_pick_idle_cpu() can get caught in an infinite loop as > - * @cpu is never cleared from idle_masks.smt. Ensure that @cpu > - * is eventually cleared. > + * @cpu is never cleared from the idle SMT mask. Ensure that > + * @cpu is eventually cleared. > * > * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to > * reduce memory writes, which may help alleviate cache > * coherence pressure. > */ > - if (cpumask_intersects(smt, idle_masks.smt)) > - cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); > - else if (cpumask_test_cpu(cpu, idle_masks.smt)) > - __cpumask_clear_cpu(cpu, idle_masks.smt); > + if (cpumask_intersects(smt, idle_smts)) > + cpumask_andnot(idle_smts, idle_smts, smt); > + else if (cpumask_test_cpu(cpu, idle_smts)) > + __cpumask_clear_cpu(cpu, idle_smts); > } > #endif > - return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); > + > + return cpumask_test_and_clear_cpu(cpu, idle_cpus); > } > > -s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) > +/* > + * Pick an idle CPU in a specific NUMA node. > + */ > +s32 pick_idle_cpu_from_node(const struct cpumask *cpus_allowed, int node, u64 flags) > { > int cpu; > > retry: > if (sched_smt_active()) { > - cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); > + cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed); > if (cpu < nr_cpu_ids) > goto found; > > @@ -79,7 +147,7 @@ s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) > return -EBUSY; > } > > - cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); > + cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed); > if (cpu >= nr_cpu_ids) > return -EBUSY; > > @@ -90,6 +158,55 @@ s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) > goto retry; > } > > +/* > + * Find the best idle CPU in the system, relative to @node. > + */ > +s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags) > +{ > + nodemask_t unvisited = NODE_MASK_ALL; > + s32 cpu = -EBUSY; > + > + if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) > + return pick_idle_cpu_from_node(cpus_allowed, NUMA_NO_NODE, flags); > + > + /* > + * If an initial node is not specified, start with the current > + * node. > + */ > + if (node == NUMA_NO_NODE) > + node = numa_node_id(); > + > + /* > + * Traverse all nodes in order of increasing distance, starting > + * from @node. > + * > + * This loop is O(N^2), with N being the amount of NUMA nodes, > + * which might be quite expensive in large NUMA systems. However, > + * this complexity comes into play only when a scheduler enables > + * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU > + * without specifying a target NUMA node, so it shouldn't be a > + * bottleneck is most cases. > + * > + * As a future optimization we may want to cache the list of hop > + * nodes in a per-node array, instead of actually traversing them > + * every time. > + */ > + for_each_numa_node(node, unvisited, N_POSSIBLE) { > + cpu = pick_idle_cpu_from_node(cpus_allowed, node, flags); > + if (cpu >= 0) > + break; > + > + /* > + * Check if the search is restricted to the same core or > + * the same node. > + */ > + if (flags & SCX_PICK_IDLE_IN_NODE) > + break; If SCX_PICK_IDLE_IN_NODE is set, you can avoid the loop at all, right? Just: if (flags & SCX_PICK_IDLE_IN_NODE) return pick_idle_cpu_from_node(cpus_allowed, node, flags); for_each_numa_node(node, unvisited, N_POSSIBLE) { cpu = pick_idle_cpu_from_node(cpus_allowed, node, flags); if (cpu >= 0) return cpu; } Thanks, Yury