Re: Kernel oops caused by signed divide

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue, Sep 10, 2024 at 2:53 PM Alexei Starovoitov
<alexei.starovoitov@xxxxxxxxx> wrote:
>
> On Tue, Sep 10, 2024 at 12:32 PM Yonghong Song <yonghong.song@xxxxxxxxx> wrote:
> >
> >
> > On 9/10/24 11:25 AM, Alexei Starovoitov wrote:
> > > On Tue, Sep 10, 2024 at 11:02 AM Yonghong Song <yonghong.song@xxxxxxxxx> wrote:
> > >>
> > >> On 9/10/24 8:21 AM, Alexei Starovoitov wrote:
> > >>> On Tue, Sep 10, 2024 at 7:21 AM Yonghong Song <yonghong.song@xxxxxxxxx> wrote:
> > >>>> On 9/9/24 10:29 AM, Alexei Starovoitov wrote:
> > >>>>> On Mon, Sep 9, 2024 at 10:21 AM Zac Ecob <zacecob@xxxxxxxxxxxxxx> wrote:
> > >>>>>> Hello,
> > >>>>>>
> > >>>>>> I recently received a kernel 'oops' about a divide error.
> > >>>>>> After some research, it seems that the 'div64_s64' function used for the 'MOD'/'REM' instructions boils down to an 'idiv'.
> > >>>>>>
> > >>>>>> The 'dividend' is set to INT64_MIN, and the 'divisor' to -1, then because of two's complement, there is no corresponding positive value, causing the error (at least to my understanding).
> > >>>>>>
> > >>>>>>
> > >>>>>> Apologies if this is already known / not a relevant concern.
> > >>>>> Thanks for the report. This is a new issue.
> > >>>>>
> > >>>>> Yonghong,
> > >>>>>
> > >>>>> it's related to the new signed div insn.
> > >>>>> It sounds like we need to update chk_and_div[] part of
> > >>>>> the verifier to account for signed div differently.
> > >>>> In verifier, we have
> > >>>>      /* [R,W]x div 0 -> 0 */
> > >>>>      /* [R,W]x mod 0 -> [R,W]x */
> > >>> the verifier is doing what hw does. In this case this is arm64 behavior.
> > >> Okay, I see. I tried on a arm64 machine it indeed hehaves like the above.
> > >>
> > >> # uname -a
> > >> Linux ... #1 SMP PREEMPT_DYNAMIC Thu Aug  1 06:58:32 PDT 2024 aarch64 aarch64 aarch64 GNU/Linux
> > >> # cat t2.c
> > >> #include <stdio.h>
> > >> #include <limits.h>
> > >> int main(void) {
> > >>     volatile long long a = 5;
> > >>     volatile long long b = 0;
> > >>     printf("a/b = %lld\n", a/b);
> > >>     return 0;
> > >> }
> > >> # cat t3.c
> > >> #include <stdio.h>
> > >> #include <limits.h>
> > >> int main(void) {
> > >>     volatile long long a = 5;
> > >>     volatile long long b = 0;
> > >>     printf("a%%b = %lld\n", a%b);
> > >>     return 0;
> > >> }
> > >> # gcc -O2 t2.c && ./a.out
> > >> a/b = 0
> > >> # gcc -O2 t3.c && ./a.out
> > >> a%b = 5
> > >>
> > >> on arm64, clang18 compiled binary has the same result
> > >>
> > >> # clang -O2 t2.c && ./a.out
> > >> a/b = 0
> > >> # clang -O2 t3.c && ./a.out
> > >> a%b = 5
> > >>
> > >> The same source code, compiled on x86_64 with -O2 as well,
> > >> it generates:
> > >>     Floating point exception (core dumped)
> > >>
> > >>>> What the value for
> > >>>>      Rx_a sdiv Rx_b -> ?
> > >>>> where Rx_a = INT64_MIN and Rx_b = -1?
> > >>> Why does it matter what Rx_a contains ?
> > >> It does matter. See below:
> > >>
> > >> on arm64:
> > >>
> > >> # cat t1.c
> > >> #include <stdio.h>
> > >> #include <limits.h>
> > >> int main(void) {
> > >>     volatile long long a = LLONG_MIN;
> > >>     volatile long long b = -1;
> > >>     printf("a/b = %lld\n", a/b);
> > >>     return 0;
> > >> }
> > >> # clang -O2 t1.c && ./a.out
> > >> a/b = -9223372036854775808
> > >> # gcc -O2 t1.c && ./a.out
> > >> a/b = -9223372036854775808
> > >>
> > >> So the result of a/b is LLONG_MIN
> > >>
> > >> The same code will cause exception on x86_64:
> > >>
> > >> $ uname -a
> > >> Linux ... #1 SMP Wed Jun  5 06:21:21 PDT 2024 x86_64 x86_64 x86_64 GNU/Linux
> > >> [yhs@devvm1513.prn0 ~]$ gcc -O2 t1.c && ./a.out
> > >> Floating point exception (core dumped)
> > >> [yhs@devvm1513.prn0 ~]$ clang -O2 t1.c && ./a.out
> > >> Floating point exception (core dumped)
> > >>
> > >> So this is what we care about.
> > >>
> > >> So I guess we can follow arm64 result too.
> > >>
> > >>> What cpus do in this case?
> > >> See above. arm64 produces *some* result while x64 cause exception.
> > >> We do need to special handle for LLONG_MIN/(-1) case.
> > > My point about Rx_a that idiv will cause out-of-range exception
> > > for many other values than Rx_a == INT64_MIN.
> > > I'm not sure that divisor -1 is the only such case either.
> > > Probably is, since intuitively -2 and all other divisors should fit fine.
> > > So the check likely needs Rx_b == -1 and a check for high bit in Rx_a ?
> >
> > Looks like only Rx_a == INT64_MIN may cause the problem.
> > All other Rx_a numbers (from INT64_MIN+1 to INT64_MAX)
> > should be okay. Some selective testing below on x64 host:
> >
> > $ cat t5.c
> > #include <stdio.h>
> > #include <limits.h>
> >
> > unsigned long long res;
> > int main(void) {
> >    volatile long long a;
> >    long long i;
> >    for (i = LLONG_MIN + 1; i <= LLONG_MIN + 100; i++) {
> >      volatile long long b = -1;
> >      a = i;
> >      res += (unsigned long long)(a/b);
> >    }
> >    for (i = LLONG_MAX - 100; i <= LLONG_MAX - 1; i++) {
>
> Changing this test to i <= LLONG_MAX
> and compiling with gcc -O0 or clang -O2 or clang -O0
> is causing an exception,
> because 'a' becomes LLONG_MIN.
> Compilers are doing some odd code gen.
> I don't understand how 'i' can wrap this way.
>
> >      volatile long long b = -1;
> >      a = i;
> >      res += (unsigned long long)(a/b);
> >    }
> >    printf("res = %llx\n", res);
> >    return 0;
> > }
> > $ gcc -O2 t5.c && ./a.out
> > res = 64
> >
> > So I think it should be okay if the range is from LLONG_MIN + 1
> > to LLONG_MAX - 1.
> >
> > Now for LLONG_MAX/(-1)
> >
> > $ cat t6.c
> > #include <stdio.h>
> > #include <limits.h>
> > int main(void) {
> >    volatile long long a = LLONG_MAX;
> >    volatile long long b = -1;
> >    printf("a/b = %lld\n", a/b);
> >    return 0;
> > }
> > $ gcc -O2 t6.c && ./a.out
> > a/b = -9223372036854775807
> >
> > It is okay too. So I think LLONG_MIN/(-1) is the only case
> > we should take care of.
>
> The test shows that that's the case, but I still can wrap
> my head around that only LLONG_MIN/(-1) is a problem.
>
> Any math experts can explain this?
>

Not a math expert, but this is because LLONG_MIN / (-1) needs to be
-LLONG_MIN, right? But -LLONG_MIN is not representable in 2-complement
representation, because positive and negative sides are not
"symmetrical":

LLONG_MIN = -9,223,372,036,854,775,808
LLONG_MAX= 9,223,372,036,854,775,807

-LLONG_MIN would be 9,223,372,036,854,775,808, which is beyond the
representable range for 64-bit signed integer.

That's why Dave asked about BPF_NEG for LLONG_MIN, it's a similar
problem, its result is unrepresentable value. So in practice
-LLONG_MIN == LLONG_MIN :)

$ cat main.c
#include <stdio.h>
#include <stdint.h>

int main()
{
        long long x = INT64_MIN;

        printf("%lld %llx %llx\n", x, x, -x);

        return 0;
}
$ cc main.c && ./a.out
-9223372036854775808 8000000000000000 8000000000000000





[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux