Re: Kernel oops caused by signed divide

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




On 9/10/24 8:21 AM, Alexei Starovoitov wrote:
On Tue, Sep 10, 2024 at 7:21 AM Yonghong Song <yonghong.song@xxxxxxxxx> wrote:

On 9/9/24 10:29 AM, Alexei Starovoitov wrote:
On Mon, Sep 9, 2024 at 10:21 AM Zac Ecob <zacecob@xxxxxxxxxxxxxx> wrote:
Hello,

I recently received a kernel 'oops' about a divide error.
After some research, it seems that the 'div64_s64' function used for the 'MOD'/'REM' instructions boils down to an 'idiv'.

The 'dividend' is set to INT64_MIN, and the 'divisor' to -1, then because of two's complement, there is no corresponding positive value, causing the error (at least to my understanding).


Apologies if this is already known / not a relevant concern.
Thanks for the report. This is a new issue.

Yonghong,

it's related to the new signed div insn.
It sounds like we need to update chk_and_div[] part of
the verifier to account for signed div differently.
In verifier, we have
    /* [R,W]x div 0 -> 0 */
    /* [R,W]x mod 0 -> [R,W]x */
the verifier is doing what hw does. In this case this is arm64 behavior.

Okay, I see. I tried on a arm64 machine it indeed hehaves like the above.

# uname -a
Linux ... #1 SMP PREEMPT_DYNAMIC Thu Aug  1 06:58:32 PDT 2024 aarch64 aarch64 aarch64 GNU/Linux
# cat t2.c
#include <stdio.h>
#include <limits.h>
int main(void) {
  volatile long long a = 5;
  volatile long long b = 0;
  printf("a/b = %lld\n", a/b);
  return 0;
}
# cat t3.c
#include <stdio.h>
#include <limits.h>
int main(void) {
  volatile long long a = 5;
  volatile long long b = 0;
  printf("a%%b = %lld\n", a%b);
  return 0;
}
# gcc -O2 t2.c && ./a.out
a/b = 0
# gcc -O2 t3.c && ./a.out
a%b = 5

on arm64, clang18 compiled binary has the same result

# clang -O2 t2.c && ./a.out
a/b = 0
# clang -O2 t3.c && ./a.out
a%b = 5

The same source code, compiled on x86_64 with -O2 as well,
it generates:
  Floating point exception (core dumped)


What the value for
    Rx_a sdiv Rx_b -> ?
where Rx_a = INT64_MIN and Rx_b = -1?
Why does it matter what Rx_a contains ?

It does matter. See below:

on arm64:

# cat t1.c
#include <stdio.h>
#include <limits.h>
int main(void) {
  volatile long long a = LLONG_MIN;
  volatile long long b = -1;
  printf("a/b = %lld\n", a/b);
  return 0;
}
# clang -O2 t1.c && ./a.out
a/b = -9223372036854775808
# gcc -O2 t1.c && ./a.out
a/b = -9223372036854775808

So the result of a/b is LLONG_MIN

The same code will cause exception on x86_64:

$ uname -a
Linux ... #1 SMP Wed Jun  5 06:21:21 PDT 2024 x86_64 x86_64 x86_64 GNU/Linux
[yhs@devvm1513.prn0 ~]$ gcc -O2 t1.c && ./a.out
Floating point exception (core dumped)
[yhs@devvm1513.prn0 ~]$ clang -O2 t1.c && ./a.out
Floating point exception (core dumped)

So this is what we care about.

So I guess we can follow arm64 result too.


What cpus do in this case?

See above. arm64 produces *some* result while x64 cause exception.
We do need to special handle for LLONG_MIN/(-1) case.


Should we just do
    INT64_MIN sdiv -1 -> -1
or some other values?





[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux