Re: fsl_ssi.c: Getting channel slips with fsl_ssi.c in TDM (network) mode.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 10/30/2015 12:04 AM, Nicolin Chen wrote:
> On Wed, Oct 28, 2015 at 09:11:39AM +0100, Roberto Fichera wrote:
>  
>> I'm also having the same issue but employing SSI in TDM master mode against a SLIC Si32178
>> using its PCM mode. PCLK is at 2048KHz, FSYNC is 8KHz slot length is 32 bits (SSI wants
>> this since when in master mode) but valid data set to be 8bits in the SSI register.
>> My Current situation is that I've a custom fsl_ssi.c driver to control the SSI in TDM master mode
>> both PCLK and FSYNC works perfectly fine, the SLIC has a register that I can check via SPI for
>> such purpose, I can see the clocking status from its side. The main problem I've is exactly the same
>> Caleb is having, after a certain amount of SDMA transfers, roughly 1000 or so, everything stops
>> without any apparent reason.
> I will start to help you to figure out your problem. But it seems that
> you are having a different issue here with clock generation. I don't
> get why you said *same issue*. For double confirm, the the "everything
> stops" mentioned, does it mean that clock from SSI stops?
>

Definitively yes! My problem is different than Caleb's one. Just to summarize the things.
I've the SSI1 connected to a SiLabs SLIC Si32178 via AUDMUX6 padmux is below:

        pinctrl_audmux_1: audmuxgrp-3 {
            fsl,pins = <
                MX6SX_PAD_SD3_DATA1__AUDMUX_AUD6_TXC    0x130b0    /* PCLK */
                MX6SX_PAD_SD3_DATA2__AUDMUX_AUD6_TXFS   0x130b0    /* FSYNC */
                MX6SX_PAD_SD3_DATA0__AUDMUX_AUD6_RXD    0x130b0    /* DTX */
                MX6SX_PAD_SD3_DATA3__AUDMUX_AUD6_TXD    0x120b0    /* DRX */
            >;
        };

The Si32178 is slave device so the SSI1 has to generate both BCLK and FSYNC. I've configured
the AUDMUX as:

int si3217x_audmux_config(unsigned int master, unsigned int slave)
{
  unsigned int ptcr, pdcr;
 
  ptcr = IMX_AUDMUX_V2_PTCR_SYN |
         IMX_AUDMUX_V2_PTCR_TFSDIR |
         IMX_AUDMUX_V2_PTCR_TFSEL(master) |
         IMX_AUDMUX_V2_PTCR_TCLKDIR |
         IMX_AUDMUX_V2_PTCR_TCSEL(master);
  pdcr = IMX_AUDMUX_V2_PDCR_RXDSEL(master);
  si3217x_audmux_v2_configure_port(slave, ptcr, pdcr); /* configure internal port */
 
  ptcr = IMX_AUDMUX_V2_PTCR_SYN;
  pdcr = IMX_AUDMUX_V2_PDCR_RXDSEL(slave);
  si3217x_audmux_v2_configure_port(master, ptcr, pdcr); /* configure external port */
 
  return 0;
}

BCLK is 2048KHz, FSYNC@8KHz, frame is 32 slots at 8bits each. Looking at TXC and TXFS
with a logical analyzer everything looks ok.

The SSI is setup at beginning as:

        unsigned long flags;
        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
        u32 srcr;
        u8 wm;

        clk_prepare_enable(ssi_private->clk);

        /*
         * Section 16.5 of the MPC8610 reference manual says that the
         * SSI needs to be disabled before updating the registers we set
         * here.
         */
        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);

        /*
         * Program the SSI into I2S Master Network Synchronous mode.
         * Also enable the transmit and receive FIFO.
         */
        write_ssi_mask(&ssi->scr,
            CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
            CCSR_SSI_SCR_I2S_MODE_NORMAL
            | CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_NET
            | CCSR_SSI_SCR_SYS_CLK_EN);

        /*
         * TX falling edge PCLK is mandatory because the RX SLIC side works in this way
         */
        writel( CCSR_SSI_STCR_TXBIT0 /* LSB Aligned */
              | CCSR_SSI_STCR_TFEN0  /* Enable TX FIFO0 */
              | CCSR_SSI_STCR_TSCKP  /* Transmit Clock Polarity - Data Clocked out on falling edge */
              | CCSR_SSI_STCR_TFDIR  /* Transmit Frame Direction Internal - generated internally */
              | CCSR_SSI_STCR_TXDIR, /* Transmit Clock Direction Internal - generated internally */
            &ssi->stcr);

    srcr = readl(&ssi->srcr);

        /*
         * clear out RFDIR and RXDIR because the clock is synchronous
         */
    srcr &= ~(CCSR_SSI_SRCR_RFDIR | CCSR_SSI_SRCR_RXDIR);

        srcr |= CCSR_SSI_SRCR_RXBIT0 /* LSB Aligned */
             |  CCSR_SSI_SRCR_RFEN0  /* Enable RX FIFO0 */
             |  CCSR_SSI_SRCR_RSCKP  /* Receive Clock Polarity - Data latched on rising edge */
            ;

    writel(srcr, &ssi->srcr);

        /* do not service the isr yet */
        writel(0, &ssi->sier);

        /*
         * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
         * don't use FIFO 1.  We program the transmit water to signal a
         * DMA transfer if there are only two (or fewer) elements left
         * in the FIFO. 
         */

       /*
        * tdm_real_slots is 2 because mask all except first 2 slots
        * our buffer is 2 slots * 8 bytes each, so set watermarks to a multiple of it
        * 8 words in our case
        */

        wm = ssi_private->tdm_real_slots * 4; //ssi_private->use_dma ? ssi_private->fifo_depth - 2 :
ssi_private->fifo_depth;

        writel(CCSR_SSI_SFCSR_TFWM0(wm) |
               CCSR_SSI_SFCSR_RFWM0(wm) |
               CCSR_SSI_SFCSR_TFWM1(wm) |
               CCSR_SSI_SFCSR_RFWM1(wm),
               &ssi->sfcsr);

        /* enable one FIFO */
        write_ssi_mask(&ssi->srcr, CCSR_SSI_SRCR_RFEN1, 0);
        write_ssi_mask(&ssi->stcr, CCSR_SSI_STCR_TFEN1, 0);

        /* disable SSI two-channel mode operation */
        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TCH_EN, 0);

        /*
         * We keep the SSI disabled because if we enable it, then the
         * DMA controller will start.  It's not supposed to start until
         * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
         * DMA controller will transfer one "BWC" of data (i.e. the
         * amount of data that the MR.BWC bits are set to).  The reason
         * this is bad is because at this point, the PCM driver has not
         * finished initializing the DMA controller.
         */

        /* Set default slot number -- 32 in our case */
        write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
            CCSR_SSI_SxCCR_DC(ssi_private->tdm_slots));
        write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
            CCSR_SSI_SxCCR_DC(ssi_private->tdm_slots));

        /* Set default word length -- 8 bits */
        write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK,
            CCSR_SSI_SxCCR_WL(ssi_private->tdm_word_size));
        write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK,
            CCSR_SSI_SxCCR_WL(ssi_private->tdm_word_size));

        /* enable the SSI */
        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);

        /*
         * we are interested only at first 2 slots
         */
        writel(~ssi_private->tdm_slots_enabled, &ssi->stmsk);
        writel(~ssi_private->tdm_slots_enabled, &ssi->srmsk);

       return 0;
}

SSI clock calculated and then enabled. Both TX and RX DMA channel are requested in the probe() function as below.
and the corresponding TX and RX SDMA event in DTS are using the default from imx6sx.dtsi:

            slave_config.direction = DMA_MEM_TO_DEV;
            slave_config.dst_addr = ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
            slave_config.dst_addr_width = width;
            slave_config.dst_maxburst = ssi_private->tdm_real_slots * 4;
            ret = dmaengine_slave_config(ssi_private->tx_chan, &slave_config);

            ssi_private->rx_chan = dma_request_slave_channel_reason(&pdev->dev, "rx");
            slave_config.direction = DMA_DEV_TO_MEM;
            slave_config.src_addr = ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
            slave_config.src_addr_width = width;
            slave_config.src_maxburst = ssi_private->tdm_real_slots * 4;
            ret = dmaengine_slave_config(ssi_private->rx_chan, &slave_config);

and setup before RDMAE and TDMAE bits, like this:

        ssi_private->tx_buf = dma_alloc_coherent(NULL, buffer_len,
                                        &ssi_private->tx_dmaaddr, GFP_KERNEL);
        desc = dmaengine_prep_dma_cyclic(ssi_private->tx_chan, ssi_private->tx_dmaaddr,
                buffer_len, ssi_private->tdm_real_slots*4,
                DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);

        desc->callback = dma_tx_callback;
        desc->callback_param = ssi_private;

        printk("TX: prepare for the DMA.\n");
        dmaengine_submit(desc);
        dma_async_issue_pending(ssi_private->tx_chan);

        ssi_private->rx_buf = dma_alloc_coherent(NULL, buffer_len,
                                        &ssi_private->rx_dmaaddr, GFP_KERNEL);

        desc = dmaengine_prep_dma_cyclic(ssi_private->rx_chan, ssi_private->rx_dmaaddr,
                buffer_len, ssi_private->tdm_real_slots*4,
                DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);

        desc->callback = dma_rx_callback;
        desc->callback_param = ssi_private;

        printk("RX: prepare for the DMA.\n");
        dmaengine_submit(desc);
        dma_async_issue_pending(ssi_private->rx_chan);

Finally, the SSI's TX and RX parts are now enabled

    scr = readl(&ssi->scr);

    scr |= CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE;   /* enable both TX and RX SSI sections */

    writel(scr, &ssi->scr);

Finally the SIER si programmed as:

   struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
    u32 sier = CCSR_SSI_SIER_RFF0_EN | CCSR_SSI_SIER_TFE0_EN;

    /*
     * if DMA is enabled than allow SSI request for DMA transfers
     * otherwise normal interrupt requests
     */

    if (ssi_private->use_dma>0)
    {
      sier |= CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_TDMAE;
    }
   
    if (ssi_private->use_dma>1 || !ssi_private->use_dma)
    {
      sier |= CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_TIE;
    }

    sier &= ~(CCSR_SSI_SIER_TDE1_EN | CCSR_SSI_SIER_TFE1_EN |
              CCSR_SSI_SIER_TFE0_EN | CCSR_SSI_SIER_TDE0_EN);

    writel(sier, &ssi->sier);

At this time I should see the DMA callbacks called every burst_size words. This behaviour
doesn't really happen as I wish because I can see from a proc file that such callbacks
are called from 1 to 20000 times and then anymore. This is also confirmed by the fact that
the interrupt 34 (sdma) doesn't increase anymore but matches my internal counters collected
within my callbacks. Here is what I can inspect from the data I have collected:

root@voneus-domus-imx6sx:~# cat /proc/domus_ssi_stats
SSI TDM Info:
        PLL clk=66000000
        SSI baudclk=49152000
        ssi_phy=0x02028000
        irq=78
        fifo_depth=15 <---- this is what is read from DTS but not as watermark
        tdm_frame_rate=8000
        tdm_slots=32 (real 2)
        tdm_word_size=8
        tdm_slots_enabled=00000000000000000000000000000011
        clk_frequency=2048000
        clock_running=yes
        DMA=yes
        Dual FIFO=no
        RX DMA frame count=17121
        RX DMA addr=0x9c692000
        RX DMA buffer len=16
        TX DMA frame count=17121
        TX DMA addr=0x9c4aa000
        TX DMA buffer len=16

SSI Registers:
        ssi_scr=0x0000009f
        ssi_sier=0x00500004
        ssi_stcr=0x000002e8
        ssi_srcr=0x00000288
        ssi_stccr=0x00007f0b
        ssi_srccr=0x00007f0b
        ssi_sfcsr=0x0088f088
        ssi_stmsk=0xfffffffc
        ssi_srmsk=0xfffffffc

Cheers,
Roberto Fichera.
_______________________________________________
Alsa-devel mailing list
Alsa-devel@xxxxxxxxxxxxxxxx
http://mailman.alsa-project.org/mailman/listinfo/alsa-devel



[Index of Archives]     [ALSA User]     [Linux Audio Users]     [Kernel Archive]     [Asterisk PBX]     [Photo Sharing]     [Linux Sound]     [Video 4 Linux]     [Gimp]     [Yosemite News]

  Powered by Linux