From: Dave Chinner <dchinner@xxxxxxxxxx> The biggest problem with large directory block sizes is the CPU overhead in maintaining the buffer log item direty region bitmap. The bit manipulations and buffer region mapping calls are right at the top of the profiles when running tests on 64k directory buffers: + 16.65% [kernel] [k] memcpy + 11.99% [kernel] [k] xfs_next_bit + 5.87% [kernel] [k] xfs_buf_item_format + 5.85% [kernel] [k] xfs_buf_item_size_segment.isra.4 + 5.72% [kernel] [k] xfs_buf_offset The memcpy is the copying of the dirty regions into the log vec array, but almost twice as much CPU time is spent working out what needs to be copied and where it needs to be copied from. As a result, on a production kernel creating 100,000 entries in a 64k directory runs at about 9,000 files/s while on a 4k directory block size it runs at 19,000 files/s - about half the speed. Switching this to just track the first and last modified bytes in the block and only converting that to a dirty bitmap in the buffer log item at format time, however, gets rid of most of this dirty bitmap overhead without increasing memcpy time at all. the result is that peformance on a 64k directory block size increases to roughly 16,000 files/s with memcpy() overhead only slightly increasing. This code works - it passes all my xfstests, stress and benchmark workloads, and has for a couple of months now. Hence it's time to ask the questions of how best to approach the region count vs log bandwidth tradeoff.... Discussion: I think that we will eventually need to track multiple regions - 3 is probably sufficient - because the nature of directory operations are that just about every operation modifies a header in the buffer, a tail section in the buffer and then some number of bytes/regions in the middle of the buffer. Hence if we just track a single region, it will almost always cover the entire directory buffer - if we only modify a single entry in the buffer, then that's a fairly large cost in terms of log space and CPU overhead for random individual operations. If we decide that we are going to use a single range, then for directories we might be better to just use the dirty flag and log the entire buffer every time. We also have to consider non-directory buffer modification patterns. freespace, inode and extent btrees are the other major types of buffers that get logged, but they also have modification patterns that lend themselves well to a small number of ranges for dirty tracking. That is, each btree block is kept compact, so when we insert or remove a record or pointer we shift then higher records/ptrs up or down as a block, and then log the lot of them. And they also often have a header that is dirtied with each insert/delete, so typically there are usually only one or two dirty ranges in a btree block. The only metadata type that really seems to benefit from fine grained dirty range logging is the inode buffers. Specifically, for v4 superblocks the create transaction only dirties the regions of the inode core, so for 256 byte inodes only dirties every alternate bitmap segement. Dirty range tracking will double the required log bandwidth of inode buffers during create (roughly 25% increase on a 4k directory block size filesystem). There isn't any performance differential noticable on typical systems because the log is far from being bandwidth bound. For v5 filesystems, this isn't an issue because the initialised inode buffers are XFS_BLI_ORDERED buffers and so their contents aren't logged. The same problem happens with unlinks due to the unlinked list being logged via the inode buffer. Again this results in an increase in log bandwidth on both v4 and v5 filesystems, but there isn't any performance differential that occurs because, again, the log isn't bandwidth bound. As it is, there is an existing plan of improvement to the unlinked list logging (moving the unlinked list logging into the inode core transaction) and hence that will avoid any extra overhead here as well. Overall, I think this is a no-brainer given the performance improvements we get on large directory block size filesystems. There are some downsides, but looking at the medium-term development plans we will mitigate the impact of most of those downsides. Comments? Signed-off-by: Dave Chinner <dchinner@xxxxxxxxxx> --- fs/xfs/xfs_buf.c | 2 + fs/xfs/xfs_buf_item.c | 294 +++++++++++++++----------------------------------- fs/xfs/xfs_buf_item.h | 19 ++++ 3 files changed, 110 insertions(+), 205 deletions(-) diff --git a/fs/xfs/xfs_buf.c b/fs/xfs/xfs_buf.c index 1790b00..bbe4e9e 100644 --- a/fs/xfs/xfs_buf.c +++ b/fs/xfs/xfs_buf.c @@ -1457,6 +1457,8 @@ xfs_buf_iomove( page = bp->b_pages[page_index]; csize = min_t(size_t, PAGE_SIZE - page_offset, BBTOB(bp->b_io_length) - boff); + if (boff + csize > bend) + csize = bend - boff; ASSERT((csize + page_offset) <= PAGE_SIZE); diff --git a/fs/xfs/xfs_buf_item.c b/fs/xfs/xfs_buf_item.c index 092d652..1816334 100644 --- a/fs/xfs/xfs_buf_item.c +++ b/fs/xfs/xfs_buf_item.c @@ -65,50 +65,12 @@ xfs_buf_item_size_segment( int *nvecs, int *nbytes) { - struct xfs_buf *bp = bip->bli_buf; - int next_bit; - int last_bit; - - last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); - if (last_bit == -1) - return; - /* * initial count for a dirty buffer is 2 vectors - the format structure - * and the first dirty region. + * and the dirty region. Dirty region is accounted for separately. */ *nvecs += 2; - *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; - - while (last_bit != -1) { - /* - * This takes the bit number to start looking from and - * returns the next set bit from there. It returns -1 - * if there are no more bits set or the start bit is - * beyond the end of the bitmap. - */ - next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, - last_bit + 1); - /* - * If we run out of bits, leave the loop, - * else if we find a new set of bits bump the number of vecs, - * else keep scanning the current set of bits. - */ - if (next_bit == -1) { - break; - } else if (next_bit != last_bit + 1) { - last_bit = next_bit; - (*nvecs)++; - } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != - (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + - XFS_BLF_CHUNK)) { - last_bit = next_bit; - (*nvecs)++; - } else { - last_bit++; - } - *nbytes += XFS_BLF_CHUNK; - } + *nbytes += xfs_buf_log_format_size(blfp); } /* @@ -135,6 +97,8 @@ xfs_buf_item_size( int *nbytes) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); + struct xfs_buf *bp = bip->bli_buf; + uint offset = 0; int i; ASSERT(atomic_read(&bip->bli_refcount) > 0); @@ -154,6 +118,7 @@ xfs_buf_item_size( } ASSERT(bip->bli_flags & XFS_BLI_LOGGED); + ASSERT(bip->bli_flags & XFS_BLI_DIRTY); if (bip->bli_flags & XFS_BLI_ORDERED) { /* @@ -175,10 +140,28 @@ xfs_buf_item_size( * count for the extra buf log format structure that will need to be * written. */ + ASSERT(bip->bli_range[0].last != 0); + if (bip->bli_range[0].last == 0) { + /* clean! */ + ASSERT(bip->bli_range[0].first == 0); + return; + } + for (i = 0; i < bip->bli_format_count; i++) { - xfs_buf_item_size_segment(bip, &bip->bli_formats[i], - nvecs, nbytes); + /* + * Only format dirty regions or stale buffers + */ + struct xfs_bli_range *rp = &bip->bli_range[0]; + + if ((rp->first <= offset + BBTOB(bp->b_maps[i].bm_len) && + rp->last >= offset)) + xfs_buf_item_size_segment(bip, &bip->bli_formats[i], + nvecs, nbytes); + offset += BBTOB(bp->b_maps[i].bm_len); } + *nbytes += bip->bli_range[0].last - bip->bli_range[0].first; + + trace_xfs_buf_item_size(bip); } @@ -191,7 +174,6 @@ xfs_buf_item_copy_iovec( int first_bit, uint nbits) { - offset += first_bit * XFS_BLF_CHUNK; xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, xfs_buf_offset(bp, offset), nbits * XFS_BLF_CHUNK); @@ -214,14 +196,18 @@ xfs_buf_item_format_segment( struct xfs_buf_log_item *bip, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp, + struct xfs_bli_range *rp, uint offset, + uint length, struct xfs_buf_log_format *blfp) { struct xfs_buf *bp = bip->bli_buf; + char *buf; uint base_size; + uint start; + uint end; int first_bit; int last_bit; - int next_bit; uint nbits; /* copy the flags across from the base format item */ @@ -233,16 +219,6 @@ xfs_buf_item_format_segment( * memory structure. */ base_size = xfs_buf_log_format_size(blfp); - - first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); - if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { - /* - * If the map is not be dirty in the transaction, mark - * the size as zero and do not advance the vector pointer. - */ - return; - } - blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); blfp->blf_size = 1; @@ -257,46 +233,40 @@ xfs_buf_item_format_segment( return; } + blfp->blf_size++; /* - * Fill in an iovec for each set of contiguous chunks. + * Now we need to set the bits in the bitmap and set up the iovecs + * appropriately. We know there is a contiguous range in this buffer + * than needs to be set, so find the first bit, the last bit, and + * go from there. */ - last_bit = first_bit; - nbits = 1; - for (;;) { - /* - * This takes the bit number to start looking from and - * returns the next set bit from there. It returns -1 - * if there are no more bits set or the start bit is - * beyond the end of the bitmap. - */ - next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, - (uint)last_bit + 1); - /* - * If we run out of bits fill in the last iovec and get out of - * the loop. Else if we start a new set of bits then fill in - * the iovec for the series we were looking at and start - * counting the bits in the new one. Else we're still in the - * same set of bits so just keep counting and scanning. - */ - if (next_bit == -1) { - xfs_buf_item_copy_iovec(lv, vecp, bp, offset, - first_bit, nbits); - blfp->blf_size++; - break; - } else if (next_bit != last_bit + 1 || - xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { - xfs_buf_item_copy_iovec(lv, vecp, bp, offset, - first_bit, nbits); - blfp->blf_size++; - first_bit = next_bit; - last_bit = next_bit; - nbits = 1; - } else { - last_bit++; - nbits++; - } - } + start = 0; + if (offset < rp->first) + start = rp->first - offset; + end = length - 1; + if (offset + length > rp->last) + end = rp->last - offset - 1; + + start &= ~((1 << XFS_BLF_SHIFT) - 1); + first_bit = start >> XFS_BLF_SHIFT; + last_bit = end >> XFS_BLF_SHIFT; + nbits = last_bit - first_bit + 1; + bitmap_set((unsigned long *)blfp->blf_data_map, first_bit, nbits); + + ASSERT(end <= length); + ASSERT(start <= length); + ASSERT(length >= nbits * XFS_BLF_CHUNK); + /* + * Copy needs to be done a buffer page at a time as we can be logging + * unmapped buffers. hence we have to use xfs_buf_iomove() rather than a + * straight memcpy here. + */ + offset += first_bit * XFS_BLF_CHUNK; + length = nbits * XFS_BLF_CHUNK; + buf = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK); + xfs_buf_iomove(bp, offset, length, buf, XBRW_READ); + xlog_finish_iovec(lv, *vecp, length); } /* @@ -323,7 +293,6 @@ xfs_buf_item_format( (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); - /* * If it is an inode buffer, transfer the in-memory state to the * format flags and clear the in-memory state. @@ -357,9 +326,17 @@ xfs_buf_item_format( } for (i = 0; i < bip->bli_format_count; i++) { - xfs_buf_item_format_segment(bip, lv, &vecp, offset, - &bip->bli_formats[i]); - offset += bp->b_maps[i].bm_len; + /* + * Only format dirty regions or stale buffers + */ + struct xfs_bli_range *rp = &bip->bli_range[0]; + if ((bip->bli_flags & XFS_BLI_STALE) || + (rp->first <= offset + BBTOB(bp->b_maps[i].bm_len) && + rp->last > offset)) + xfs_buf_item_format_segment(bip, lv, &vecp, rp, offset, + BBTOB(bp->b_maps[i].bm_len), + &bip->bli_formats[i]); + offset += BBTOB(bp->b_maps[i].bm_len); } /* @@ -800,6 +777,9 @@ xfs_buf_item_init( bip->bli_formats[i].blf_map_size = map_size; } + BUILD_BUG_ON(XFS_BLI_RANGES != 1); + bip->bli_range[0].first = UINT_MAX; + /* * Put the buf item into the list of items attached to the * buffer at the front. @@ -809,91 +789,9 @@ xfs_buf_item_init( bp->b_fspriv = bip; } - /* * Mark bytes first through last inclusive as dirty in the buf - * item's bitmap. - */ -static void -xfs_buf_item_log_segment( - uint first, - uint last, - uint *map) -{ - uint first_bit; - uint last_bit; - uint bits_to_set; - uint bits_set; - uint word_num; - uint *wordp; - uint bit; - uint end_bit; - uint mask; - - /* - * Convert byte offsets to bit numbers. - */ - first_bit = first >> XFS_BLF_SHIFT; - last_bit = last >> XFS_BLF_SHIFT; - - /* - * Calculate the total number of bits to be set. - */ - bits_to_set = last_bit - first_bit + 1; - - /* - * Get a pointer to the first word in the bitmap - * to set a bit in. - */ - word_num = first_bit >> BIT_TO_WORD_SHIFT; - wordp = &map[word_num]; - - /* - * Calculate the starting bit in the first word. - */ - bit = first_bit & (uint)(NBWORD - 1); - - /* - * First set any bits in the first word of our range. - * If it starts at bit 0 of the word, it will be - * set below rather than here. That is what the variable - * bit tells us. The variable bits_set tracks the number - * of bits that have been set so far. End_bit is the number - * of the last bit to be set in this word plus one. - */ - if (bit) { - end_bit = MIN(bit + bits_to_set, (uint)NBWORD); - mask = ((1 << (end_bit - bit)) - 1) << bit; - *wordp |= mask; - wordp++; - bits_set = end_bit - bit; - } else { - bits_set = 0; - } - - /* - * Now set bits a whole word at a time that are between - * first_bit and last_bit. - */ - while ((bits_to_set - bits_set) >= NBWORD) { - *wordp |= 0xffffffff; - bits_set += NBWORD; - wordp++; - } - - /* - * Finally, set any bits left to be set in one last partial word. - */ - end_bit = bits_to_set - bits_set; - if (end_bit) { - mask = (1 << end_bit) - 1; - *wordp |= mask; - } -} - -/* - * Mark bytes first through last inclusive as dirty in the buf - * item's bitmap. + * record dirty regions on the buffer. */ void xfs_buf_item_log( @@ -901,33 +799,19 @@ xfs_buf_item_log( uint first, uint last) { - int i; - uint start; - uint end; - struct xfs_buf *bp = bip->bli_buf; - - /* - * walk each buffer segment and mark them dirty appropriately. - */ - start = 0; - for (i = 0; i < bip->bli_format_count; i++) { - if (start > last) - break; - end = start + BBTOB(bp->b_maps[i].bm_len); - if (first > end) { - start += BBTOB(bp->b_maps[i].bm_len); - continue; - } - if (first < start) - first = start; - if (end > last) - end = last; - - xfs_buf_item_log_segment(first, end, - &bip->bli_formats[i].blf_data_map[0]); - - start += bp->b_maps[i].bm_len; - } + ASSERT(last != 0); + ASSERT(first <= last); + ASSERT(last < BBTOB(bip->bli_buf->b_length)); + + /* initial implementation - single range */ + BUILD_BUG_ON(XFS_BLI_RANGES != 1); + if (first < bip->bli_range[0].first) + bip->bli_range[0].first = rounddown(first, XFS_BLF_CHUNK); + if (last > bip->bli_range[0].last) + bip->bli_range[0].last = roundup(last, XFS_BLF_CHUNK); + + ASSERT(bip->bli_range[0].last != 0); + ASSERT(bip->bli_range[0].first <= bip->bli_range[0].last); } diff --git a/fs/xfs/xfs_buf_item.h b/fs/xfs/xfs_buf_item.h index 3f3455a..3594eb6 100644 --- a/fs/xfs/xfs_buf_item.h +++ b/fs/xfs/xfs_buf_item.h @@ -57,6 +57,25 @@ typedef struct xfs_buf_log_item { unsigned int bli_recur; /* lock recursion count */ atomic_t bli_refcount; /* cnt of tp refs */ int bli_format_count; /* count of headers */ + + /* + * logging ranges. Keep a small number of distinct ranges rather than a + * bitmap which is expensive to maintain. Initial implementation is just + * a single range, but it is like that 3 or 4 will be optimal so that we + * can log separate header, tail and content changes (e.g. for dir + * structures) without capturing the entire buffer unnecessarily for + * isolated changes. + * + * Note: ranges are 32 bit values because we have to support an end + * range value of 0x10000.... + */ +#define XFS_BLI_RANGES 1 + struct xfs_bli_range { + uint32_t first; + uint32_t last; + } bli_range[XFS_BLI_RANGES]; + int bli_ranges; + struct xfs_buf_log_format *bli_formats; /* array of in-log header ptrs */ struct xfs_buf_log_format __bli_format; /* embedded in-log header */ } xfs_buf_log_item_t; -- 2.0.0 _______________________________________________ xfs mailing list xfs@xxxxxxxxxxx http://oss.sgi.com/mailman/listinfo/xfs