Smithsonian / USGS Weekly Volcanic Activity Report 25-31 January 2023

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



4-4-4-4-4-4-4-4-4-4-4-4-4


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

25-31 January 2023



Sally Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://urldefense.com/v3/__https://volcano.si.edu/reports_weekly.cfm__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uNXxkrOo$ 
<https://urldefense.com/v3/__https://volcano.si.edu/reports_weekly.cfm__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_u4unpXk$>





New Activity/Unrest: Asosan, Kyushu (Japan)  | Chikurachki, Paramushir
Island (Russia)  | Epi, Vanuatu  | Erta Ale, Ethiopia  | Lascar, Northern
Chile  | Myojinsho, Izu Islands  | Nishinoshima, Izu Islands



Ongoing Activity: Ahyi, Mariana Islands (USA)  | Aira, Kyushu (Japan)  |
Cotopaxi, Ecuador  | Ebeko, Paramushir Island (Russia)  | Etna, Sicily
(Italy)  | Great Sitkin, Andreanof Islands (USA)  | Kaitoku Seamount,
Volcano Islands (Japan)  | Kilauea, Hawaiian Islands (USA)  | Krakatau,
Sunda Strait  | Lewotolok, Lembata Island  | Merapi, Central Java  |
Popocatepetl, Mexico  | Sabancaya, Peru  | Semeru, Eastern Java  |
Semisopochnoi, Aleutian Islands (USA)  | Sheveluch, Central Kamchatka
(Russia)  | Stromboli, Aeolian Islands (Italy)  | Suwanosejima, Ryukyu
Islands (Japan)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that the amplitude of volcanic tremor signals at Asosan
increased at around 1200 on 30 January and then increased again around 1220
and remained high. At 1330 JMA raised the Alert Level to 2 (on a scale of
1-5) and warned the public to stay at least 1 km away from the crater.
White plumes were visible rising 300 m above the crater rim.



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uGPmlnYG$ 
<https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_uiGbq4Y$>





Chikurachki  | Paramushir Island (Russia)  | 50.324°N, 155.461°E  | Summit
elev. 1781 m



KVERT reported that an explosive eruption at Chikurachki likely began at
0630 on 29 January. Ash plumes rose to as high as 3 km (10,000 ft) a.s.l.
and drifted 75 km SE based on satellite data. The Aviation Color Code was
raised to Orange (the second highest level on a four-color scale). At 1406
and 1720 ash plumes were identified in satellite images rising to 4.3 km
(14,000 ft) a.s.l. and drifting 70 km E. Ash plumes had dissipated by 2320.



Geologic Summary. Chikurachki, the highest volcano on Paramushir Island in
the northern Kuriles, is a relatively small cone constructed on a high
Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits
covering the upper part of the young cone give it a distinctive red color.
Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava
flows have reached the sea and formed capes on the NW coast; several young
lava flows are also present on the E flank beneath a scoria deposit. The
Tatarinov group of six volcanic centers is located immediately to the
south, and the Lomonosov cinder cone group, the source of an early Holocene
lava flow that reached the saddle between it and Fuss Peak to the west,
lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex.
In contrast to the frequently active Chikurachki, the Tatarinov centers are
extensively modified by erosion and have a more complex structure.
Tephrochronology gives evidence of an eruption around 1690 CE from
Tatarinov, although its southern cone contains a sulfur-encrusted crater
with fumaroles that were active along the margin of a crater lake until
1959.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
https://urldefense.com/v3/__http://www.kscnet.ru/ivs/kvert/index_eng.php__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uE-0z4tj$ 
<https://urldefense.com/v3/__http://www.kscnet.ru/ivs/kvert/index_eng.php__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_Jo7-Ih8$>





Epi  | Vanuatu  | 16.68°S, 168.37°E  | Summit elev. 833 m



The Wellington VAAC reported that a low-level plume of ash and sulfur
dioxide from a new eruption at Epi was identified in satellite data at 0730
on 31 January. According to the Vanuatu Meteorology and Geo-Hazards
Department (VMGD) residents saw steaming at the oceanâ??s surface in the area
over the vents at around 0748, and phreatic explosions that ejected steam
and tephra 100 m above the water. The Alert Level was raised to 1 (on a
scale of 0-5) and the public was warned to stay 10 km away from the East
Epi submarine volcano. Observers reportedly saw a growing cone from ongoing
ash emissions. The VAAC noted that the eruption was short-lived and had
ceased by 1548; the ash had dissipated.



Three submarine cones, Epi A, Epi B, and Epi C, and smaller cones and
craters, are located 10-16 km NNE from the summit of Epi Island and are
aligned along the N rim of an inferred caldera. Epi B is the shallowest of
the seamounts and has been historically active, most recently in February
2004. A March 2004 bathymetric survey revealed that Epi B was about 300 m
tall, with a diameter of about 1.8 km at the base. The summit crater was
about 150 m in diameter and the crater floor was at a depth of 90 m. The
highest point was on the NW rim of the summit crater, at a depth of 34 m.



Geologic Summary. A large caldera, with submarine post-caldera cones active
in historical time, lies off the eastern coast of Epi Island. Epi Island
itself, located slightly west of the main New Hebrides volcanic arc,
largely consists of two Quaternary volcanoes, Mount Allombei on the west
and Pomare (Tavani Kutali) on the east. Tavani Ruro, which forms an
elongated eastern extension of Epi Island across a narrow isthmus, is
related to Kuwae caldera to the east. Pomare volcano is the highest point
on the island and has three well-preserved subsidiary cones to the east
with youthful summit craters. Pomare volcano is truncated on its eastern
side by the largely submarine East Epi caldera, which has been the source
of all historical eruptions. Three small submarine basaltic and dacitic
cones, known as Epi A, Epi B, and Epi C, are located along the northern rim
of the breached caldera. Ephemeral islands were formed during eruptions in
1920 and 1953, and the summit of the shallowest cone, Epi B, was at 34 m
below sea level at the time of a 2001 survey.



Sources: Vanuatu Meteorology and Geo-Hazards Department (VMGD)
https://urldefense.com/v3/__http://www.geohazards.gov.vu/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uDRNwIJQ$ 
<https://urldefense.com/v3/__http://www.geohazards.gov.vu/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_mZoVGQ8$>
;

Wellington Volcanic Ash Advisory Center (VAAC) https://urldefense.com/v3/__http://vaac.metservice.com/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uE-gRvJB$ 
<https://urldefense.com/v3/__http://vaac.metservice.com/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_6ONvSzc$>





Erta Ale  | Ethiopia  | 13.6°N, 40.67°E  | Summit elev. 613 m



Small thermal anomalies in both of Erta Aleâ??s N and S pit craters were
identified in satellite images on 23 January. On 28 January the anomaly in
the N pit crater was large and intense.



Geologic Summary. The Erta Ale basaltic shield volcano is the most active
in Ethiopia, with a 50-km-wide edifice that rises more than 600 m from
below sea level in the barren Danakil depression. It is the namesake and
most prominent feature of the Erta Ale Range. The volcano includes a 0.7 x
1.6 km elliptical summit crater hosting steep-sided pit craters. Another
larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the
Erta Ale range is located SE of the summit and is bounded by curvilinear
fault scarps on the SE side. Fresh-looking basaltic lava flows from these
fissures have poured into the caldera and locally overflowed its rim. The
summit caldera usually also holds at least one long-term lava lake that has
been active since at least 1967, or possibly since 1906. Recent fissure
eruptions have occurred on the N flank.



Source: Sentinel Hub https://urldefense.com/v3/__https://sentinel-hub.com/explore/sentinel-playground__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uFlqY3x5$ 
<https://urldefense.com/v3/__https://sentinel-hub.com/explore/sentinel-playground__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_N5wDGZQ$>





Lascar  | Northern Chile  | 23.37°S, 67.73°W  | Summit elev. 5592 m



SERNAGEOMIN reported increased seismicity at Láscar on 26 January with
long-period (LP) events indicating fluid movement at shallower depths. The
Alert Level was raised to Yellow (the second lowest level on a four-color
scale) and SENAPRED warned the public to stay at least 3 km away from the
crater. ONEMI declared an Alert Level Yellow (the middle level on a
three-color scale) for San Pedro de Atacama (70 km NW). A seismic signal at
2259 corresponded to the ejection of incandescent material and the emission
of a plume that likely contained tephra and rose almost 1.9 km and drifted
NW.



The intensity of LP events significantly increased at 2300 on 27 January
and remained at anomalous levels. A series of four LP events were recorded
at 0015, 0032, 0043, and 0052 on 28 January and corresponding emissions
rose 380 m above the crater rim and drifted NW. An M 3.2 volcano-tectonic
earthquake was recorded at 0115 and felt by residents. LP earthquakes
continued to be detected, along with tremor and volcano-tectonic events to
a lesser extent. Minor crater incandescence was visible and gas plumes rose
as high as 760 m. At 0430 the Alert Level was raised to Orange and the
restricted zone was increased to 5 km. Elevated levels of seismicity
continued to be detected during 28-30 January. Whitish-gray gas plumes
possibly containing tephra rose to low heights and minor crater
incandescence was occasionally observed. On 31 January SERNAGEOMIN stated
that a satellite image from the day before showed a dome-like feature on
the crater floor that was 81 m by 93 m in dimension and covered an area of
about 5,332 square meters. The exclusion zone was increased to 10 km.



Geologic Summary. Láscar is the most active volcano of the northern Chilean
Andes. The andesitic-to-dacitic stratovolcano contains six overlapping
summit craters. Prominent lava flows descend its NW flanks. An older,
higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a
well-developed summit crater and a probable Holocene lava flow near its
summit (de Silva and Francis, 1991). Láscar consists of two major edifices;
activity began at the eastern volcano and then shifted to the western cone.
The largest eruption took place about 26,500 years ago, and following the
eruption of the Tumbres scoria flow about 9000 years ago, activity shifted
back to the eastern edifice, where three overlapping craters were formed.
Frequent small-to-moderate explosive eruptions have been recorded since the
mid-19th century, along with periodic larger eruptions that produced
ashfall hundreds of kilometers away. The largest historical eruption took
place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and
ashfall in Buenos Aires.



Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN)
https://urldefense.com/v3/__http://www.sernageomin.cl/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uMo3d3gv$ 
<https://urldefense.com/v3/__http://www.sernageomin.cl/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_v5Mc3Wc$>
;

Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI)
https://urldefense.com/v3/__http://www.onemi.cl/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uHVKBzTc$ 
<https://urldefense.com/v3/__http://www.onemi.cl/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_4fCTFuk$>





Myojinsho  | Izu Islands  | 31.888°N, 139.918°E  | Summit elev. 11 m



According to JMA an area of pale yellow-green discolored water with a
diameter of about 100 m was visible about 65 km SSE of Myojinsho on 26
January, based on an overflight conducted by the Japan Coast Guard. An
eruption warning was issued to mariners. Discolored water was last observed
in March 2017.



Geologic Summary. Beyonesu Rocks represent part of the barely exposed rim
of the largely submarine Myojinsho caldera. Formation of the 8-9 km wide
caldera was followed by construction of a large (2.6 km3) lava dome and/or
lava flow complex on the caldera floor, originally located at a depth of
1000-1100 m. Most historical eruptions, recorded since the late-19th
century, have occurred from the large post-caldera Myojinsho lava dome on
the NE rim of the caldera. Deposits from submarine pyroclastic flows
associated with growth of the dacitic lava dome mantle the conical dome and
extend into the NE part of the caldera and down its outer slopes. An
explosive submarine eruption from Myojinsho in 1952 destroyed a Japanese
research vessel, killing all 31 on board. Submarine eruptions have also
been observed from other points on the caldera rim and outside of the
caldera. The Beyonesu Rocks were named after the French warship the
Bayonnaise, which was surveying volcanic islands south of Tokyo Bay in 1850.



Sources: Japan Meteorological Agency (JMA) https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uGPmlnYG$ 
<https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_uiGbq4Y$>
;

Japan Coast Guard https://urldefense.com/v3/__http://www.kaiho.mlit.go.jp/index.html__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uLYHDhUn$ 
<https://urldefense.com/v3/__http://www.kaiho.mlit.go.jp/index.html__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_f2BApsM$>





Nishinoshima  | Izu Islands  | 27.247°N, 140.874°E  | Summit elev. 25 m



The Japan Coast Guard reported that during an overflight of Nishinoshima on
25 January scientists observed intermittent activity and small,
blackish-gray plumes rising 900 m from the central part of the crater. The
fumarolic zone on the E flank and base of the cone had expanded and
emissions had intensified. Dark brown discolored water was visible all
around the volcanic island.



Geologic Summary. The small island of Nishinoshima was enlarged when
several new islands coalesced during an eruption in 1973-74. Another
eruption that began offshore in 2013 completely covered the previous
exposed surface and enlarged the island again. Water discoloration has been
observed on several occasions since. The island is the summit of a massive
submarine volcano that has prominent satellitic peaks to the S, W, and NE.
The summit of the southern cone rises to within 214 m of the sea surface 9
km SSE.



Source: Japan Coast Guard https://urldefense.com/v3/__http://www.kaiho.mlit.go.jp/index.html__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uLYHDhUn$ 
<https://urldefense.com/v3/__http://www.kaiho.mlit.go.jp/index.html__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_f2BApsM$>





Ongoing Activity





Ahyi  | Mariana Islands (USA)  | 20.42°N, 145.03°E  | Summit elev. -75 m



Unrest at Ahyi Seamount continued during 24-31 January. Pressure sensors on
Wake Island, 2,270 km E of Ahyi Seamount, detected a possible explosion
signal on 25 January. Plumes of discolored water were identified in
satellite images during 27-31 January. The Aviation Color Code remained at
Yellow (the second lowest level on a four-color scale) and the Volcano
Alert Level remained at Advisory (the second lowest level on a four-level
scale).



Geologic Summary. Ahyi seamount is a large conical submarine volcano that
rises to within 75 m of the sea surface about 18 km SE of the island of
Farallon de Pajaros (Uracas) in the northern Marianas. Water discoloration
has been observed there, and in 1979 the crew of a fishing boat felt shocks
over the summit area of the seamount, followed by upwelling of
sulfur-bearing water. On 24-25 April 2001 an explosive eruption was
detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago.
The event was well constrained (+/- 15 km) at a location near the southern
base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers,
hydroacoustic sensors, and seismic stations.



Source: US Geological Survey https://urldefense.com/v3/__https://www.usgs.gov/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uCvxf_SX$ 
<https://urldefense.com/v3/__https://www.usgs.gov/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_MmD3L78$>





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported ongoing eruptive activity at Minamidake Crater (at Aira
Calderaâ??s Sakurajima volcano) during 23-30 January and crater incandescence
was visible nightly. Two explosions were recorded on 24 January, though
weather clouds prevented visual confirmation. Sulfur dioxide emissions were
high at 2,800 tons per day on 26 January. An explosion at 2342 on 28
January produced an ash plume that rose 2.2 km above the crater rim and
ejected large blocks as far as 700 m from the crater. The Alert Level
remained at 3 (on a 5-level scale), and residents were warned to stay 2 km
away from the crater.



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uGPmlnYG$ 
<https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_uiGbq4Y$>





Cotopaxi  | Ecuador  | 0.677°S, 78.436°W  | Summit elev. 5911 m



IG reported that the eruption at Cotopaxi continued during 24-31 January,
characterized by almost daily gas-and-steam and ash emissions; inclement
weather conditions prevented views of the volcano on 29 January. During
24-25 January steam-and-gas plumes rose to the crater level and drifted W.
During 26-27 January gas-and-ash plumes rose less than 1 km above the
crater rim and drifted SW and W. Minor ashfall was reported in San Agustín
de Callo (18 km WSW), Lima Villacís, Mulaló, Barrancas, Ticatilín and Caspi
(20 km WSW), and San Ramon (127 km W). Steam-and-gas emissions rose 600 m
and drifted S on 28 January. A significant increase in the size and density
of ash emissions was evident in satellite images at 0820 on 30 January. The
plumes rose as high as 2.5 km above the crater rim and drifted SW, S, and
SE. Minor amounts of ash fell in Mulaló and Latacunga (18 km WSW). Ash
plumes rose as high as 1.7 km and drifted S and SE on 31 January. Servicio
Nacional de Gestión de Riesgos y Emergencias (SNGRE) maintained the Alert
Level at Yellow (the second lowest level on a four-color scale).



Geologic Summary. The symmetrical, glacier-covered, Cotopaxi stratovolcano
is Ecuador's most well-known volcano and one of its most active. The
steep-sided cone is capped by nested summit craters, the largest of which
is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate
from the summit of the andesitic volcano, and large andesitic lava flows
extend to its base. The modern edifice has been constructed since a major
collapse sometime prior to about 5,000 years ago. Pyroclastic flows (often
confused in historical accounts with lava flows) have accompanied many
explosive eruptions, and lahars have frequently devastated adjacent
valleys. Strong eruptions took place in 1744, 1768, and 1877. Pyroclastic
flows descended all sides of the volcano in 1877, and lahars traveled more
than 100 km into the Pacific Ocean and western Amazon basin. Smaller
eruptions have been frequent since that time.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
https://urldefense.com/v3/__http://www.igepn.edu.ec/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uNSNCjVi$ 
<https://urldefense.com/v3/__http://www.igepn.edu.ec/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_lxpST2s$>





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



KVERT reported that moderate activity at Ebeko was ongoing during 19-26
January. According to volcanologists in Severo-Kurilsk (Paramushir Island,
about 7 km E) explosions during 20-24 January generated ash plumes that
rose as high as 3.7 km (12,100 ft) a.s.l. and drifted SE, NE, and N. An ash
plume was identified in satellite images drifting 40 km NE on 21 January
and a thermal anomaly was visible during 21-22 January. The Aviation Color
Code remained at Orange (the second highest level on a four-color scale).
Dates are based on UTC times; specific events are in local time where noted.



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
https://urldefense.com/v3/__http://www.kscnet.ru/ivs/kvert/index_eng.php__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uE-0z4tj$ 
<https://urldefense.com/v3/__http://www.kscnet.ru/ivs/kvert/index_eng.php__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_Jo7-Ih8$>





Etna  | Sicily (Italy)  | 37.748°N, 14.999°E  | Summit elev. 3357 m



INGV reported that the vents at the NE base of Etnaâ??s SE Crater, in the
Valle del Leone at about 2,800 m elevation, continued to feed lava flows
during 23-29 January, without notable changes compared to the week before.
Intense gas emissions rose from Bocca Nuova Crater while gas emissions at
Northeast Crater (NEC) and Voragine were minimal. Activity at Southeast
Crater was characterized by fumarolic activity localized along the crater
rim and from the May-June 2022 eruptive vent which also occasionally
produced flashes of incandescence at night. Diffuse ash emissions rapidly
dispersed with the wind.



Geologic Summary. Mount Etna, towering above Catania on the island of
Sicily, has one of the world's longest documented records of volcanism,
dating back to 1500 BCE. Historical lava flows of basaltic composition
cover much of the surface of this massive volcano, whose edifice is the
highest and most voluminous in Italy. The Mongibello stratovolcano,
truncated by several small calderas, was constructed during the late
Pleistocene and Holocene over an older shield volcano. The most prominent
morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera
open to the east. Two styles of eruptive activity typically occur,
sometimes simultaneously. Persistent explosive eruptions, sometimes with
minor lava emissions, take place from one or more summit craters. Flank
vents, typically with higher effusion rates, are less frequently active and
originate from fissures that open progressively downward from near the
summit (usually accompanied by Strombolian eruptions at the upper end).
Cinder cones are commonly constructed over the vents of lower-flank lava
flows. Lava flows extend to the foot of the volcano on all sides and have
reached the sea over a broad area on the SE flank.



Source: Sezione di Catania - Osservatorio Etneo (INGV)
https://urldefense.com/v3/__http://www.ct.ingv.it/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uNipqMf-$ 
<https://urldefense.com/v3/__http://www.ct.ingv.it/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_PS2z9ro$>





Great Sitkin  | Andreanof Islands (USA)  | 52.076°N, 176.13°W  | Summit
elev. 1740 m



AVO reported that slightly elevated surface temperatures at Great Sitkin
were identified in satellite images during 25-26 January. Seismicity was
low during 25-31 January and a few small earthquakes recorded during 27-28
January. Satellite and webcam views were mostly cloudy. A 26 January radar
image confirmed growth of the flow field to the E. The Volcano Alert Level
remained at Watch (the second highest level on a four-level scale) and the
Aviation Color Code remained at Orange (the second highest level on a
four-color scale).



Geologic Summary. The Great Sitkin volcano forms much of the northern side
of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8
x 1.2 km ice-filled summit caldera was constructed within a large
late-Pleistocene or early Holocene scarp formed by massive edifice failure
that truncated an ancestral volcano and produced a submarine debris
avalanche. Deposits from this and an older debris avalanche from a source
to the south cover a broad area of the ocean floor north of the volcano.
The summit lies along the eastern rim of the younger collapse scarp.
Deposits from an earlier caldera-forming eruption of unknown age cover the
flanks of the island to a depth up to 6 m. The small younger caldera was
partially filled by lava domes emplaced in 1945 and 1974, and five small
older flank lava domes, two of which lie on the coastline, were constructed
along northwest- and NNW-trending lines. Hot springs, mud pots, and
fumaroles occur near the head of Big Fox Creek, south of the volcano.
Historical eruptions have been recorded since the late-19th century.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://urldefense.com/v3/__https://avo.alaska.edu/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uOj_oIaL$ 
<https://urldefense.com/v3/__https://avo.alaska.edu/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_YpOj_Dk$>





Kaitoku Seamount  | Volcano Islands (Japan)  | 26.127°N, 141.102°E  |
Summit elev. -95 m



Discolored water around the Kaitoku Seamount was visible in a 26 January
Sentinel 2 satellite image. The plume was diffuse and dispersed a few
kilometers E. No discolored water was visible in a 31 January image.



Geologic Summary. A submarine eruption was observed in 1984 from Kaitoku
Seamount (Kaitoku Kaizan), a three-peaked submarine volcano 130 km NNW of
Kita-Iojima. A submarine eruption had previously been reported in 1543 from
a point about 40 km to the SW, which the Japan Meteorological Agency
attributes to Kaitoku.



Source: Sentinel Hub https://urldefense.com/v3/__https://sentinel-hub.com/explore/sentinel-playground__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uFlqY3x5$ 
<https://urldefense.com/v3/__https://sentinel-hub.com/explore/sentinel-playground__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_N5wDGZQ$>





Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev.
1222 m



HVO reported that lava continued to erupt in the E portion of Kilaueaâ??s
Halemaâ??umaâ??u Crater floor during 24-31 January. Activity was concentrated
in the E half of the crater in a large, perched lava lake with well-defined
levees, covering about 10 hectares. A smaller lake to the W was active in
the basin of the 2021-2022 lava lake. One dominant lava fountain, 6-7 m
high, was active in the E lake. Small daily overflows occurred along the
margins of the E lake. The Volcano Alert Level remained at Watch (the
second highest level on a four-level scale) and the Aviation Color Code
remained at Orange (the second highest level on a four-color scale).



Geologic Summary. Kilauea overlaps the E flank of the massive Mauna Loa
shield volcano in the island of Hawaii. Eruptions are prominent in
Polynesian legends; written documentation since 1820 records frequent
summit and flank lava flow eruptions interspersed with periods of long-term
lava lake activity at Halemaumau crater in the summit caldera until 1924.
The 3 x 5 km caldera was formed in several stages about 1,500 years ago and
during the 18th century; eruptions have also originated from the lengthy
East and Southwest rift zones, which extend to the ocean in both
directions. About 90% of the surface of the basaltic shield volcano is
formed of lava flows less than about 1,100 years old; 70% of the surface is
younger than 600 years. The long-term eruption from the East rift zone
between 1983 and 2018 produced lava flows covering more than 100 km2,
destroyed hundreds of houses, and added new coastline.



Source: US Geological Survey Hawaiian Volcano Observatory (HVO)
https://urldefense.com/v3/__https://volcanoes.usgs.gov/observatories/hvo/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uIGKYA5O$ 
<https://urldefense.com/v3/__https://volcanoes.usgs.gov/observatories/hvo/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_vlddew0$>





Krakatau  | Sunda Strait  | 6.102°S, 105.423°E  | Summit elev. 155 m



PVMBG reported that the eruption at Anak Krakatau continued during 24-31
January. Eruptive events at 0231 and 2256 on 25 January and 0003 on 26
January ejected incandescent material from the vent, based on webcam
photos. Eruptive events at 0512, 0633, and 0732 on 26 January and 1312 on
27 January produced dense gray ash plumes that rose 300-500 m above the
summit and drifted NE, E, and SE. Webcam images showed incandescent ejecta
at 2135, 2144, and 2328 January. The Alert Level remained at 3 (on a scale
of 1-4), and the public was warned to stay at least 5 km away from the
crater.



Geologic Summary. The renowned volcano Krakatau (frequently misstated as
Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of
the ancestral edifice, perhaps in 416 or 535 CE, formed a 7-km-wide
caldera. Remnants of that volcano are preserved in Verlaten and Lang
Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed,
coalescing to create the pre-1883 Krakatau Island. Caldera collapse during
the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left
only a remnant of Rakata. This eruption caused more than 36,000 fatalities,
most as a result of tsunamis that swept the adjacent coastlines of Sumatra
and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and
reached the Sumatra coast. After a quiescence of less than a half century,
the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed
within the 1883 caldera at a point between the former cones of Danan and
Perbuwatan. Anak Krakatau has been the site of frequent eruptions since
1927.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) https://urldefense.com/v3/__http://vsi.esdm.go.id/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uAhY9tVK$ 
<https://urldefense.com/v3/__http://vsi.esdm.go.id/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_EqNV1fo$>





Lewotolok  | Lembata Island  | 8.274°S, 123.508°E  | Summit elev. 1431 m



PVMBG reported that the eruption at Lewotolok was ongoing during 24-31
January. Nighttime webcam images captured near-daily incandescent material
that was ejected above the summit crater. Almost daily emissions that were
white and gray and had variable densities rose as high as 600 m above the
summit and drifted SE, E, and NE. The Alert Level remained at 2 (on a scale
of 1-4) and the public was warned to stay 2 km away from the summit crater.



Geologic Summary. The Lewotolok (or Lewotolo) stratovolcano occupies the
eastern end of an elongated peninsula extending north into the Flores Sea,
connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is
symmetrical when viewed from the north and east. A small cone with a
130-m-wide crater constructed at the SE side of a larger crater forms the
volcano's high point. Many lava flows have reached the coastline. Eruptions
recorded since 1660 have consisted of explosive activity from the summit
crater.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) https://urldefense.com/v3/__http://vsi.esdm.go.id/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uAhY9tVK$ 
<https://urldefense.com/v3/__http://vsi.esdm.go.id/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_EqNV1fo$>





Merapi  | Central Java  | 7.54°S, 110.446°E  | Summit elev. 2910 m



BPPTKG reported that the eruption at Merapi continued during 20-26 January
and seismicity remained at high levels. The SW lava dome produced 14 lava
avalanches that traveled as far as 1.8 km down the SW flank (upstream in
the Kali Bebeng drainage). Avalanche sounds were heard on seven occasions.
No significant morphological changes at the SW dome were observed but the
central dome decreased in height based on webcam images. The Alert Level
remained at 3 (on a scale of 1-4), and the public was warned to stay 3-7 km
away from the summit based on location.



Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in
one of the world's most densely populated areas and dominates the landscape
immediately north of the major city of Yogyakarta. It is the youngest and
southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth
of Old Merapi during the Pleistocene ended with major edifice collapse
perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the
eroded older Batulawang volcano. Subsequent growth of the steep-sided Young
Merapi edifice, its upper part unvegetated due to frequent activity, began
SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying
growth and collapse of the steep-sided active summit lava dome have
devastated cultivated lands on the western-to-southern flanks and caused
many fatalities.



Source: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi
(BPPTKG) https://urldefense.com/v3/__http://www.merapi.bgl.esdm.go.id/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uPJAFlD-$ 
<https://urldefense.com/v3/__http://www.merapi.bgl.esdm.go.id/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_ntTQzxg$>





Popocatepetl  | Mexico  | 19.023°N, 98.622°W  | Summit elev. 5393 m



CENAPRED reported that there were 81-238 steam-and-gas emissions, often
containing ash, rising from Popocatépetl each day during 24-31 January and
explosions occurred almost daily. Two explosions were recorded at 1424 and
1426 on 24 January. Minor ashfall was reported on 25 January in San Nicolás
de los Ranchos (15 km ENE). Later that day, at 2231, an explosion ejected
incandescent material onto the flanks. An overflight was conducted by
Instituto de Geofísica de la Universidad Nacional Autónoma de México (UNAM)
and the Guardia Nacional on 27 January to observe the crater. They saw a
small lava dome that was about 30-40 m in diameter and 5-10 m tall on the
inner crater floor. The inner crater floor had remnants of the previous
domes mixed with fine tephra deposits and was 160-180 m deep. The rim of
the inner crater was 390-410 m in diameter, similar to previous
observations. A minor explosion later that day at 2214 produced an ash
plume, based on a webcam image. Minor explosions were recorded at 0451,
0521, 1828, and 2232 on 28 January. A webcam image from 0343 on 29 January
showed deposits of incandescent material that was ejected onto the flanks.
Another explosion occurred at 2254. Explosions were noted at 0141 and 0621
on 30 January; minor ashfall was recorded in Amecameca (19 km NW),
Temamatla (32 km NW), and Tenango Del Aire (28 km NW). A moderate explosion
at 0029 on 31 January produced an ash plume that rose 1.8 km above the
crater rim and ejected incandescent material onto the flanks almost 2 km
from the crater rim. Minor explosions occurred at 0533, 0619, and 0721. The
Alert Level remained at Yellow, Phase Two (the middle level on a
three-color scale).



Geologic Summary. Volcán Popocatépetl, whose name is the Aztec word for
smoking mountain, rises 70 km SE of Mexico City to form North America's
2nd-highest volcano. The glacier-clad stratovolcano contains a
steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is
modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier
volcano. At least three previous major cones were destroyed by
gravitational failure during the Pleistocene, producing massive
debris-avalanche deposits covering broad areas to the south. The modern
volcano was constructed south of the late-Pleistocene to Holocene El Fraile
cone. Three major Plinian eruptions, the most recent of which took place
about 800 CE, have occurred since the mid-Holocene, accompanied by
pyroclastic flows and voluminous lahars that swept basins below the
volcano. Frequent historical eruptions, first recorded in Aztec codices,
have occurred since Pre-Columbian time.



Source: Centro Nacional de Prevencion de Desastres (CENAPRED)
https://urldefense.com/v3/__https://www.gob.mx/cenapred__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uLXh-lff$ 
<https://urldefense.com/v3/__https://www.gob.mx/cenapred__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_OXYSnCM$>





Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m



Instituto Geofísico del Perú (IGP) reported moderate levels of activity at
Sabancaya during 23-29 January with a daily average of 59 explosions.
Gas-and-ash plumes rose as high as 2.1 km above the summit and drifted SW
and W. Four thermal anomalies originating from the lava dome in the summit
crater were identified in satellite data. Minor inflation continued to be
detected near Hualca Hualca (4 km N). The Alert Level remained at Orange
(the second highest level on a four-color scale) and the public were warned
to stay outside of a 12-km radius.



Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of
Hualca Hualca volcanoes, is the youngest of these volcanic centers and the
only one to have erupted in historical time. The oldest of the three,
Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene
age. The name Sabancaya (meaning "tongue of fire" in the Quechua language)
first appeared in records in 1595 CE, suggesting activity prior to that
date. Holocene activity has consisted of Plinian eruptions followed by
emission of voluminous andesitic and dacitic lava flows, which form an
extensive apron around the volcano on all sides but the south. Records of
historical eruptions date back to 1750.



Source: Instituto Geofísico del Perú (IGP) https://urldefense.com/v3/__http://www.igp.gob.pe/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uBlXaquL$ 
<https://urldefense.com/v3/__http://www.igp.gob.pe/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_WqkEclI$>





Semeru  | Eastern Java  | 8.108°S, 112.922°E  | Summit elev. 3657 m



PVMBG reported that the eruption at Semeru continued during 24-31 January.
Dense white-and-gray ash plumes rose 500-600 m above the summit at 0450 and
0540 on 25 January and drifted N. A dense gray ash plume rose 600 m at 0534
on 27 January and drifted NW, and at 0802 a dense white-and-gray ash plume
rose 500 m and drifted N. At 0602 and 0639 on 29 January dense gray ash
plumes rose 500-600 m and drifted NE. The Alert Level remained at 3 (on a
scale of 1-4). The public was warned to stay at least 5 km away from the
summit, and 500 m from Kobokan drainages within 17 km of the summit, along
with other drainages originating on Semeru, including the Bang, Kembar, and
Sat, due to lahar, avalanche, and pyroclastic flow hazards.



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) https://urldefense.com/v3/__http://vsi.esdm.go.id/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uAhY9tVK$ 
<https://urldefense.com/v3/__http://vsi.esdm.go.id/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_EqNV1fo$>





Semisopochnoi  | Aleutian Islands (USA)  | 51.93°N, 179.58°E  | Summit
elev. 1221 m



AVO reported that eruptive activity at Semisopochnoiâ??s Mount Young was
ongoing during 24-31 January. Seismicity was elevated and daily weak tremor
was recorded. Minor steam emissions were visible in webcam images on 24
January and 29-30 January. Discolored snow observed at the summit in webcam
images during 28-29 January possibly indicated minor, low-level explosive
activity at the vent. The Aviation Color Code remained at Orange (the
second highest level on a four-color scale) and the Volcano Alert Level
remained at Watch (the second highest level on a four-level scale).



Geologic Summary. Semisopochnoi, the largest subaerial volcano of the
western Aleutians, is 20 km wide at sea level and contains an 8-km-wide
caldera. It formed as a result of collapse of a low-angle, dominantly
basaltic volcano following the eruption of a large volume of dacitic
pumice. The high point of the island is Anvil Peak, a double-peaked
late-Pleistocene cone that forms much of the island's northern part. The
three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed
within the caldera during the Holocene. Each of the peaks contains a summit
crater; lava flows on the N flank appear younger than those on the south
side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak
SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of
Fenner Lake in the NE part of the caldera. Most documented eruptions have
originated from Young, although Coats (1950) considered that both Sugarloaf
and Lakeshore Cone could have been recently active.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://urldefense.com/v3/__https://avo.alaska.edu/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uOj_oIaL$ 
<https://urldefense.com/v3/__https://avo.alaska.edu/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_YpOj_Dk$>





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that the ongoing eruption at Sheveluch during 19-26 January
was generally characterized by explosions, hot avalanches, lava-dome
extrusion, and strong fumarolic activity. A daily thermal anomaly was
identified in satellite images, and minor ash plumes from explosions and
lava-dome collapses drifted 25 km SW on 22 January. The Aviation Color Code
remained at Orange (the second highest level on a four-color scale). Dates
are based on UTC times; specific events are in local time where noted.



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's
largest and most active volcanic structures, with at least 60 large
eruptions during the Holocene. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes occur on its outer flanks. The
Molodoy Shiveluch lava dome complex was constructed during the Holocene
within the large open caldera; Holocene lava dome extrusion also took place
on the flanks of Stary Shiveluch. Widespread tephra layers from these
eruptions have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
https://urldefense.com/v3/__http://www.kscnet.ru/ivs/kvert/index_eng.php__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uE-0z4tj$ 
<https://urldefense.com/v3/__http://www.kscnet.ru/ivs/kvert/index_eng.php__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_Jo7-Ih8$>





Stromboli  | Aeolian Islands (Italy)  | 38.789°N, 15.213°E  | Summit elev.
924 m



INGV reported that both explosive and effusive activity at Stromboli
occurred during 23-29 January at four vents in Area N, within the upper
part of the Sciara del Fuoco, and at two vents in the Area C-S
(South-Central Crater area) in the crater terrace area. Explosions at vents
N1 and N2 in Area N were variable in intensity and ejected coarse material
(bombs and lapilli) 80-150 m at a rate of 4-6 explosions per hour. Intense
spattering occasionally occurred at N2 vents. Explosive activity at the
Central-South area (CS) ejected fine-to-coarse material as high as 150 m
above the vent at a rate of 6-7 explosions per hour during 23-27 January;
the rate decreased to less than one event per hour the rest of the week.



At 1419 on 24 January lava overflowed vents in the N2 area after a period
of intense spattering. The lava flowed partially down the Sciara del Fuoco,
and by the next morning, they were cooling. A major explosion began at 1007
on 30 January that lasted three minutes long. Coarse pyroclastic material
was ejected several hundred meters high and was deposited on the crater
terrace and the upper parts of the Sciara del Fuoco. An ash cloud quickly
dispersed to the S.



Geologic Summary. Spectacular incandescent nighttime explosions at
Stromboli have long attracted visitors to the "Lighthouse of the
Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to
the frequent mild explosive activity that has characterized its eruptions
throughout much of historical time. The small island is the emergent summit
of a volcano that grew in two main eruptive cycles, the last of which
formed the western portion of the island. The Neostromboli eruptive period
took place between about 13,000 and 5,000 years ago. The active summit
vents are located at the head of the Sciara del Fuoco, a prominent scarp
that formed about 5,000 years ago due to a series of slope failures which
extends to below sea level. The modern volcano has been constructed within
this scarp, which funnels pyroclastic ejecta and lava flows to the NW.
Essentially continuous mild Strombolian explosions, sometimes accompanied
by lava flows, have been recorded for more than a millennium.



Source: Sezione di Catania - Osservatorio Etneo (INGV)
https://urldefense.com/v3/__http://www.ct.ingv.it/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uNipqMf-$ 
<https://urldefense.com/v3/__http://www.ct.ingv.it/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_PS2z9ro$>





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported that the eruption at Suwanosejima's Ontake Crater continued
during 23-30 January. The number of explosions increased on 26 January; a
total of 13 explosions were recorded during the week. The explosions
produced eruption plumes that rose as high as 1.7 km above the crater rim
and entered weather clouds. Large blocks were ejected as far as 400 m from
the craterâ??s center. Nighttime crater incandescence was observed starting
on 26 January. Ashfall was reported in Toshima village (3.5 km SSW). The
Alert Level remained at 2 (on a 5-level scale) and residents were warned to
stay 1 km away from the crater.



Geologic Summary. The 8-km-long island of Suwanosejima in the northern
Ryukyu Islands consists of an andesitic stratovolcano with two historically
active summit craters. The summit is truncated by a large breached crater
extending to the sea on the east flank that was formed by edifice collapse.
One of Japan's most frequently active volcanoes, it was in a state of
intermittent Strombolian activity from Otake, the NE summit crater, between
1949 and 1996, after which periods of inactivity lengthened. The largest
recorded eruption took place in 1813-14, when thick scoria deposits
blanketed residential areas, and the SW crater produced two lava flows that
reached the western coast. At the end of the eruption the summit of Otake
collapsed, forming a large debris avalanche and creating the open Sakuchi
caldera, which extends to the eastern coast. The island remained
uninhabited for about 70 years after the 1813-1814 eruption. Lava flows
reached the eastern coast of the island in 1884. Only about 50 people live
on the island.



Source: Japan Meteorological Agency (JMA) https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uGPmlnYG$ 
<https://urldefense.com/v3/__http://www.jma.go.jp/jma/__;!!IKRxdwAv5BmarQ!bGtuVyrb_i5Ud6CFDdjHfQp0hE9KqiH5P8Nfvc_PfEFJTbGwwTn-435A6mcD620KnXM_uiGbq4Y$>



4-4-4-4-4-4-4-4-4-4-4-4-4



==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - https://urldefense.com/v3/__http://pdx.edu/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uPU_Q8_I$ 

GVP - https://urldefense.com/v3/__http://www.volcano.si.edu/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uIoOhirW$ 

IAVCEI - https://urldefense.com/v3/__https://www.iavceivolcano.org/__;!!IKRxdwAv5BmarQ!e6u_NbUhe7iUJrUVpgMZhyrJ1LusyYlABACbmXyllz68PdAjXiAk3I1iZ2YXWcH4S9G5z9c7uBVg5mJa$ 



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 30 Jan 2023 to 1 Feb 2023 (#2023-15)
************************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux