Smithsonian / USGS Weekly Volcanic Activity Report 14-20 October 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



4-4-4-4-4-4-4-4-4-4-4-4-4


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

14-20 October 2020



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Karymsky, Eastern Kamchatka (Russia)  | Klyuchevskoy,
Central Kamchatka (Russia)



Ongoing Activity: Aira, Kyushu (Japan)  | Dukono, Halmahera (Indonesia)  |
Ebeko, Paramushir Island (Russia)  | Kadovar, Papua New Guinea  | Kerinci,
Indonesia  | Pavlof, United States  | Reventador, Ecuador  | Sangay,
Ecuador  | Semeru, Eastern Java (Indonesia)  | Sheveluch, Central Kamchatka
(Russia)  | Suwanosejima, Ryukyu Islands (Japan)  | Villarrica, Chile  |
Westdahl, Fox Islands (USA)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



Pilots observed explosions at 1430 on 21 October at Karymsky with ash
plumes that rose to 4 km (13,100 ft) a.s.l. and drifted SE. KVERT raised
the Aviation Color Code to Orange (the second highest level on a four-color
scale).



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that Strombolian activity at Klyuchevskoy was continuing
during 9-16 October and a lava flow was advancing down the Apakhonchich
drainage on the SE flank. A large bright thermal anomaly was identified in
satellite images and during 8-9 October ash plumes drifted 270 km SE. The
Aviation Color Code was raised to Orange (the second highest level on a
four-color scale) on 8 October.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 14-20 October incandescence from Minamidake Crater
(at Aira Calderaâ??s Sakurajima volcano) was visible nightly. A small
eruption was recorded on 13 October. During an overflight that same day
scientists observed lava at the bottom of the crater. The Alert Level
remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, the Darwin VAAC reported that
during 15-17 and 19-20 October ash plumes from Dukono rose to 2.1-2.4 km
(7,000-8,000 ft) a.s.l. and drifted SW, W, N, and E. The Alert Level
remained at 2 (on a scale of 1-4), and the public was warned to remain
outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 8-12 and 14-15 October that sent ash
plumes up to 3 km (10,000 ft) a.s.l. and drifted N, E, SE, and S. Ash fell
in Severo-Kurilsk during 9-10 October. A thermal anomaly over the volcano
was visible in satellite data on 12 October. The Aviation Color Code
remained at Orange (the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Kadovar  | Papua New Guinea  | 3.608°S, 144.588°E  | Summit elev. 365 m



Based on satellite data, the Darwin VAAC reported that on 18 October a
discrete ash puff from Kadovar rose to an altitude of 1.5 km (5,000 ft)
a.s.l. and drifted W.



Geologic Summary. The 2-km-wide island of Kadovar is the emergent summit of
a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten
Islands, and lies off the coast of New Guinea, about 25 km N of the mouth
of the Sepik River. Prior to an eruption that began in 2018, a lava dome
formed the high point of the andesitic volcano, filling an arcuate
landslide scarp open to the south; submarine debris-avalanche deposits
occur in that direction. Thick lava flows with columnar jointing forms low
cliffs along the coast. The youthful island lacks fringing or offshore
reefs. A period of heightened thermal phenomena took place in 1976. An
eruption began in January 2018 that included lava effusion from vents at
the summit and at the E coast.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Kerinci  | Indonesia  | 1.697°S, 101.264°E  | Summit elev. 3800 m



PVMBG reported that on 17 October dense white, brown, and black ash plumes
rose 100-800 m above Kerinciâ??s summit and drifted NE. White-and-brown
plumes rose as high as 400 m and drifted NE and E during 18-19 October. The
Alert Level remained at 2 (on a scale of 1-4), and the public was reminded
to stay outside of the general 1-km radius from the summit and 4 km on the
SSE flank.



Geologic Summary. Gunung Kerinci in central Sumatra forms Indonesia's
highest volcano and is one of the most active in Sumatra. It is capped by
an unvegetated young summit cone that was constructed NE of an older crater
remnant. There is a deep 600-m-wide summit crater often partially filled by
a small crater lake that lies on the NE crater floor, opposite the SW-rim
summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above
surrounding plains and is elongated in a N-S direction. Frequently active,
Kerinci has been the source of numerous moderate explosive eruptions since
its first recorded eruption in 1838.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Pavlof  | United States  | 55.417°N, 161.894°W  | Summit elev. 2493 m



AVO reported that no seismic tremor at Pavlof had been recorded during the
previous two weeks, nor had eruptive activity or unusual surface
temperatures been observed in satellite and webcam images. The Volcano
Alert Level and Aviation Color Code were lowered to Normal and Green,
respectively, on 14 October.



Geologic Summary. The most active volcano of the Aleutian arc, Pavlof is a
2519-m-high Holocene stratovolcano that was constructed along a line of
vents extending NE from the Emmons Lake caldera. Pavlof and its twin
volcano to the NE, 2142-m-high Pavlof Sister, form a dramatic pair of
symmetrical, glacier-covered stratovolcanoes that tower above Pavlof and
Volcano bays. A third cone, Little Pavlof, is a smaller volcano on the SW
flank of Pavlof volcano, near the rim of Emmons Lake caldera. Unlike Pavlof
Sister, Pavlof has been frequently active in historical time, typically
producing Strombolian to Vulcanian explosive eruptions from the summit
vents and occasional lava flows. The active vents lie near the summit on
the north and east sides. The largest historical eruption took place in
1911, at the end of a 5-year-long eruptive episode, when a fissure opened
on the N flank, ejecting large blocks and issuing lava flows.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Reventador  | Ecuador  | 0.077°S, 77.656°W  | Summit elev. 3562 m



IG reported that a high level of activity continued to be recorded at
Reventador during 14-20 October. Gas, steam, and ash emissions, observed
sometimes multiple times a day with the webcam or reported by the
Washington VAAC, rose as high as 1 km above the summit crater and drifted
NE, NW, and W. Crater incandescence and incandescent blocks rolling down
the flanks were observed almost nightly; blocks rolled 600 m down the SE
flank during 17-18 October. The 400-m-long lava flow on the NE flank
remained active but did not advance.



Geologic Summary. Reventador is the most frequently active of a chain of
Ecuadorian volcanoes in the Cordillera Real, well east of the principal
volcanic axis. The forested, dominantly andesitic Volcán El Reventador
stratovolcano rises to 3562 m above the jungles of the western Amazon
basin. A 4-km-wide caldera widely breached to the east was formed by
edifice collapse and is partially filled by a young, unvegetated
stratovolcano that rises about 1300 m above the caldera floor to a height
comparable to the caldera rim. It has been the source of numerous lava
flows as well as explosive eruptions that were visible from Quito in
historical time. Frequent lahars in this region of heavy rainfall have
constructed a debris plain on the eastern floor of the caldera. The largest
historical eruption took place in 2002, producing a 17-km-high eruption
column, pyroclastic flows that traveled up to 8 km, and lava flows from
summit and flank vents.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m



IG reported a high level of activity at Sangay during 14-20 October.
Seismicity was characterized by explosions, harmonic tremor, long-period
earthquakes, and signals indicating emissions. Weather clouds often
prevented visual observations of the volcano, but the Washington VAAC and
IG webcams recorded daily ash plumes that rose 570-2,100 m above the summit
and drifted NW and W. One small secondary lahar was reported on 16 October.



Geologic Summary. The isolated Sangay volcano, located east of the Andean
crest, is the southernmost of Ecuador's volcanoes and its most active. The
steep-sided, glacier-covered, dominantly andesitic volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed by
collapse to the east, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000 years
ago. It towers above the tropical jungle on the east side; on the other
sides flat plains of ash have been sculpted by heavy rains into
steep-walled canyons up to 600 m deep. The earliest report of a historical
eruption was in 1628. More or less continuous eruptions were reported from
1728 until 1916, and again from 1934 to the present. The almost constant
activity has caused frequent changes to the morphology of the summit crater
complex.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG that gray-and-white ash plumes rose 200-1,000 m above Semeruâ??s summit
and drifted S and W during 16-17 October. The Alert Level remained at 2 (on
a scale of 1-4).).



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 8-16 October. A plume of re-suspended ash drifted
310 km SE during 8-9 October. The Aviation Color Code remained at Orange
(the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported nighttime incandescence and intermittent eruptive activity at
Suwanosejimaâ??s Ontake Crater during 9-16 October. Four explosions were
recorded during 12-14 October; an explosion at 0100 on 13 October ejected
bombs 400 m from the crater and an explosion at 0313 on 14 October produced
an ash plume that rose 1.2 km above the crater rim. Ashfall was
periodically reported in Toshima village, 4 km SSW. The Alert Level
remained at 2 (on a 5-level scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit is truncated by a large
breached crater extending to the sea on the east flank that was formed by
edifice collapse. Suwanosejima, one of Japan's most frequently active
volcanoes, was in a state of intermittent strombolian activity from Otake,
the NE summit crater, that began in 1949 and lasted until 1996, after which
periods of inactivity lengthened. The largest historical eruption took
place in 1813-14, when thick scoria deposits blanketed residential areas,
and the SW crater produced two lava flows that reached the western coast.
At the end of the eruption the summit of Otake collapsed forming a large
debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which
extends to the eastern coast. The island remained uninhabited for about 70
years after the 1813-1814 eruption. Lava flows reached the eastern coast of
the island in 1884. Only about 50 people live on the island.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Villarrica  | Chile  | 39.42°S, 71.93°W  | Summit elev. 2847 m



SERNAGEOMIN reported that explosions at Villarrica were recorded at 0534
and 0804 on 15 October and were each associated with long-period
seismicity. The first explosion ejected incandescent material above the
crater rim and deposited tephra on the E flank as far as 3 km. The second
explosion ejected tephra 450 m. An explosion and long-period event were
recorded at 1722 on 20 October; an ash plume rose 240 m above the vent and
drifted S. POVI noted that the vent was 5-6 m in diameter at a depth of 150
m below the crater rim. The Alert Level remained at Yellow, the second
lowest level on a four-color scale. ONEMI maintained an Alert Level Yellow
(the middle level on a three-color scale) for the municipalities of
Villarrica, Pucón (16 km N), Curarrehue, and the commune of Panguipulli,
and the exclusion zone for the public of 500 m around the crater.



Geologic Summary. Glacier-clad Villarrica, one of Chile's most active
volcanoes, rises above the lake and town of the same name. It is the
westernmost of three large stratovolcanoes that trend perpendicular to the
Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A
2-km-wide caldera that formed about 3500 years ago is located at the base
of the presently active, dominantly basaltic to basaltic-andesitic cone at
the NW margin of the Pleistocene caldera. More than 30 scoria cones and
fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that
have extended up to 20 km from the volcano were produced during the
Holocene. Lava flows up to 18 km long have issued from summit and flank
vents. Historical eruptions, documented since 1558, have consisted largely
of mild-to-moderate explosive activity with occasional lava effusion.
Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its
flanks.



Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN)
http://www.sernageomin.cl/;

Proyecto Observación Villarrica Internet (POVI) http://www.povi.cl/;

Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI)
http://www.onemi.cl/





Westdahl  | Fox Islands (USA)  | 54.516°N, 164.65°W  | Summit elev. 1563 m



AVO reported that the seismic network at Westdahl has been re-established,
again allowing seismic unrest at the volcano to be monitored. The Volcano
Alert Level and Aviation Color Code were changed from Unassigned to Normal
and Green, respectively, on 15 October.



Geologic Summary. Westdahl is a broad glacier-covered volcano occupying the
SW end of Unimak Island. Two peaks protrude from the summit plateau, and a
new crater formed in 1978 cuts the summit icecap. The volcano has a
somewhat of a shield-like morphology and forms one of the largest volcanoes
of the Aleutian Islands. The sharp-topped, conical Pogromni stratovolcano,
6 km N, rises several hundred meters higher than Westdahl, but is
moderately glacially dissected and presumably older. Many satellitic cones
of postglacial age are located along a NW-SE line cutting across the summit
of Westdahl. Some of the historical eruptions attributed to the eroded
Pogromni may have originated instead from Westdahl (Miller et al. 1998).
The first historical eruption occurred in 1795. An 8-km-long fissure
extending east from the summit produced explosive eruptions and lava flows
in 1991.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/


4-4-4-4-4-4-4-4-4-4-4-4-4


==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 19 Oct 2020 to 22 Oct 2020 (#2020-102)
**************************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux