Smithsonian / USGS Weekly Volcanic Activity Report 29 July-4 August 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



2-2-2-2-2-2-2-2-2-2-2-2-2


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

29 July-4 August 2020



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Langila, New Britain (Papua New Guinea)  | Manam,
Papua New Guinea  | Nishinoshima, Japan  | Telica, Nicaragua  | Turrialba,
Costa Rica



Ongoing Activity: Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island
(Russia)  | Fuego, Guatemala  | Ibu, Halmahera (Indonesia)  | Kadovar,
Papua New Guinea  | Karymsky, Eastern Kamchatka (Russia)  | Nevado del
Ruiz, Colombia  | Pacaya, Guatemala  | Santa Maria, Guatemala  | Semeru,
Eastern Java (Indonesia)  | Sheveluch, Central Kamchatka (Russia)  |
Suwanosejima, Ryukyu Islands (Japan)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Langila  | New Britain (Papua New Guinea)  | 5.525°S, 148.42°E  | Summit
elev. 1330 m



Based on analyses of satellite imagery and wind-model data, the Darwin VAAC
reported that during 1-3 August ash plumes from Langila rose to an altitude
of 2.4 km (8,000 ft) a.s.l. and drifted NW and W. A thermal anomaly over
the volcano was visible on 3 August. Ash plumes became diffuse later on 3
August, rising to 1.8 km (6,000 ft) a.s.l. and drifting NW.



Geologic Summary. Langila, one of the most active volcanoes of New Britain,
consists of a group of four small overlapping composite basaltic-andesitic
cones on the lower eastern flank of the extinct Talawe volcano. Talawe is
the highest volcano in the Cape Gloucester area of NW New Britain. A
rectangular, 2.5-km-long crater is breached widely to the SE; Langila
volcano was constructed NE of the breached crater of Talawe. An extensive
lava field reaches the coast on the north and NE sides of Langila. Frequent
mild-to-moderate explosive eruptions, sometimes accompanied by lava flows,
have been recorded since the 19th century from three active craters at the
summit of Langila. The youngest and smallest crater (no. 3 crater) was
formed in 1960 and has a diameter of 150 m.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Manam  | Papua New Guinea  | 4.08°S, 145.037°E  | Summit elev. 1807 m



RVO reported that seismicity at Manam began increasing on 16 July and
fluctuated between low and moderate levels through the 29th. A slow steady
increase of RSAM values was recorded on 30 July, and RVO stated that an
observer had reported that incandescent material had been ejected from the
summit. The Darwin VAAC noted that a sustained and intense thermal anomaly
was visible in satellite images that same day. During 31 July-1 August ash
plumes drifted NW at an altitude of 4.3 (14,000 ft) a.s.l. and a lava flow
at the summit was visible.



Geologic Summary. The 10-km-wide island of Manam, lying 13 km off the
northern coast of mainland Papua New Guinea, is one of the country's most
active volcanoes. Four large radial valleys extend from the unvegetated
summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its
lower flanks. These "avalanche valleys" channel lava flows and pyroclastic
avalanches that have sometimes reached the coast. Five small satellitic
centers are located near the island's shoreline on the northern, southern,
and western sides. Two summit craters are present; both are active,
although most historical eruptions have originated from the southern
crater, concentrating eruptive products during much of the past century
into the SE valley. Frequent historical eruptions, typically of
mild-to-moderate scale, have been recorded since 1616. Occasional larger
eruptions have produced pyroclastic flows and lava flows that reached
flat-lying coastal areas and entered the sea, sometimes impacting populated
areas.



Sources: Rabaul Volcano Observatory (RVO) ; Darwin Volcanic Ash Advisory
Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Nishinoshima  | Japan  | 27.247°N, 140.874°E  | Summit elev. 25 m



Based on satellite data, the Tokyo VAAC reported that during 29 July-3
August ash plumes from Nishinoshima rose to 3.4-5.8 km (11,000-19,000 ft)
a.s.l. and drifted in multiple directions. Strong sulfur dioxide signatures
continued to be detected in satellite data.



Geologic Summary. The small island of Nishinoshima was enlarged when
several new islands coalesced during an eruption in 1973-74. Another
eruption that began offshore in 2013 completely covered the previous
exposed surface and enlarged the island again. Water discoloration has been
observed on several occasions since. The island is the summit of a massive
submarine volcano that has prominent satellitic peaks to the S, W, and NE.
The summit of the southern cone rises to within 214 m of the sea surface 9
km SSE.



Sources: Tokyo Volcanic Ash Advisory Center (VAAC)
http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html;

Simon Carn http://www.volcarno.com/





Telica  | Nicaragua  | 12.606°N, 86.84°W  | Summit elev. 1036 m



SINAPRED reported that 7-10 gas-and-ash explosions at Telica on 29 July
generated plumes that rose 30-60 m above the crater rim and drifted N.



Geologic Summary. Telica, one of Nicaragua's most active volcanoes, has
erupted frequently since the beginning of the Spanish era. This volcano
group consists of several interlocking cones and vents with a general NW
alignment. Sixteenth-century eruptions were reported at symmetrical Santa
Clara volcano at the SW end of the group. However, its eroded and breached
crater has been covered by forests throughout historical time, and these
eruptions may have originated from Telica, whose upper slopes in contrast
are unvegetated. The steep-sided cone of Telica is truncated by a
700-m-wide double crater; the southern crater, the source of recent
eruptions, is 120 m deep. El Liston, immediately E, has several nested
craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE
of Telica, form a prominent geothermal area frequented by tourists, and
geothermal exploration has occurred nearby.



Sources: Sistema Nacional para la Prevención, Mitigación y Atención de
Desastres (SINAPRED) http://www.sinapred.gob.ni/;

El 19 Digital
https://www.el19digital.com/articulos/ver/titulo:105749-reportan-explosiones-de-gases-y-cenizas-en-el-volcan-telica





Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m



At 0946 on 29 July an eruptive event generated a plume that rose 200-300 m
above Turrialbaâ??s crater rim. Several ash eruptions (10) were recorded for
a period starting at 2010 on 30 July and ending at 0940 on 31 July. Each
event lasted less than 10 minutes and plumes rose no higher than 200 m. An
incandescent area was visible on the SW wall of the crater. At 0746 on 1
August a plume rose 500 m and at 0545 on 4 August a plume rose 300 m.



Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene
volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located
across a broad saddle NE of Irazú volcano overlooking the city of Cartago.
The massive edifice covers an area of 500 km2. Three well-defined craters
occur at the upper SW end of a broad 800 x 2200 m summit depression that is
breached to the NE. Most activity originated from the summit vent complex,
but two pyroclastic cones are located on the SW flank. Five major explosive
eruptions have occurred during the past 3500 years. A series of explosive
eruptions during the 19th century were sometimes accompanied by pyroclastic
flows. Fumarolic activity continues at the central and SW summit craters.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Ongoing Activity





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on information from PVMBG and satellite data, the Darwin VAAC
reported that ash plumes from Dukono rose to 2.1 km (7,000 ft) a.s.l. and
drifted in multiple directions during 29 July-3 August. The Alert Level
remained at a 2 (on a scale of 1-4), and the public was warned to remain
outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



KVERT reported that a thermal anomaly over Ebeko was identified in
satellite images during 23-24 and 28 July. Volcanologists in Severo-Kurilsk
(Paramushir Island), about 7 km E, observed explosions during 26-30 July
that sent ash plumes up to 3.5 km (11,500 ft) a.s.l. and drifted S and E.
The Aviation Color Code remained at Orange (the second highest level on a
four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Fuego  | Guatemala  | 14.473°N, 90.88°W  | Summit elev. 3763 m



INSIVUMEH reported that at 2050 on 29 July lahars descended the Las Lajas
and El Jute drainages on Fuegoâ??s SE flanks. There were 6-13 explosions per
hour recorded during 29 July-4 August, generating ash plumes as high as 1.1
km above the crater rim that generally drifted 15-20 km NW, W, and SW.
Shock waves rattled buildings within a 20-km radius, particularly in areas
on the S flank. Incandescent material ejected 100-350 m high caused
avalanches of blocks in the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá
(SW), Las Lajas, and Honda drainages; avalanches sometimes reached
vegetated areas. Ashfall was reported in several areas downwind including
Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, San
Pedro Yepocapa (8 km NW), and Sangre de Cristo (8 km WSW).



Geologic Summary. Volcán Fuego, one of Central America's most active
volcanoes, is also one of three large stratovolcanoes overlooking
Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta,
lies between Fuego and Acatenango to the north. Construction of Meseta
dates back to about 230,000 years and continued until the late Pleistocene
or early Holocene. Collapse of Meseta may have produced the massive
Escuintla debris-avalanche deposit, which extends about 50 km onto the
Pacific coastal plain. Growth of the modern Fuego volcano followed,
continuing the southward migration of volcanism that began at the mostly
andesitic Acatenango. Eruptions at Fuego have become more mafic with time,
and most historical activity has produced basaltic rocks. Frequent vigorous
historical eruptions have been recorded since the onset of the Spanish era
in 1524, and have produced major ashfalls, along with occasional
pyroclastic flows and lava flows.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m



PVMBG reported that during 29-30 July white-to-gray plumes rose 200-800 m
above Ibuâ??s summit and drifted NW; weather conditions prevented visual
observations during 31 July-1 August. The Darwin VAAC reported a thermal
anomaly in satellite images on 31 July. The Alert Level remained at 2 (on a
scale of 1-4), and the public was warned to stay at least 2 km away from
the active crater, and 3.5 km away on the N side.



Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along
the NW coast of Halmahera Island has large nested summit craters. The inner
crater, 1 km wide and 400 m deep, contained several small crater lakes
through much of historical time. The outer crater, 1.2 km wide, is breached
on the north side, creating a steep-walled valley. A large parasitic cone
is located ENE of the summit. A smaller one to the WSW has fed a lava flow
down the W flank. A group of maars is located below the N and W flanks.
Only a few eruptions have been recorded in historical time, the first a
small explosive eruption from the summit crater in 1911. An eruption
producing a lava dome that eventually covered much of the floor of the
inner summit crater began in December 1998.



Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/;

Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Kadovar  | Papua New Guinea  | 3.608°S, 144.588°E  | Summit elev. 365 m



Based on satellite and wind model data, the Darwin VAAC reported that on 30
July an ash plume from Kadovar rose to an altitude of 1.5 km (5,000 ft)
a.s.l. and drifted NW. An ash plume rose to 1.2 km (4,000 ft) a.s.l. and
drifted NW on 3 August.



Geologic Summary. The 2-km-wide island of Kadovar is the emergent summit of
a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten
Islands, and lies off the coast of New Guinea, about 25 km N of the mouth
of the Sepik River. Prior to an eruption that began in 2018, a lava dome
formed the high point of the andesitic volcano, filling an arcuate
landslide scarp open to the south; submarine debris-avalanche deposits
occur in that direction. Thick lava flows with columnar jointing forms low
cliffs along the coast. The youthful island lacks fringing or offshore
reefs. A period of heightened thermal phenomena took place in 1976. An
eruption began in January 2018 that included lava effusion from vents at
the summit and at the E coast.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



KVERT reported that a thermal anomaly over Karymsky was identified in
satellite images during 24-31 July. Strombolian and Vulcanian explosions
during 27-30 July produced ash plumes that rose to 3-3.5 km (10,000-11,500
ft) a.s.l. and drifted 250 km SW and SE. The Aviation Color Code remained
at Orange (the second highest level on a four-color scale).



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Nevado del Ruiz  | Colombia  | 4.892°N, 75.324°W  | Summit elev. 5279 m



Servicio Geológico Colombianoâ??s (SGC) reported that a seismic signal
associated with fluid movement beneath Nevado del Ruiz was recorded at 0636
on 30 July. Concurrently a small gas-and-ash plume visible with the webcam
rose as high as 560 m above the summit. The Alert Level remained at 3,
Yellow (the second lowest level on a four-color scale).



Geologic Summary. Nevado del Ruiz is a broad, glacier-covered volcano in
central Colombia that covers more than 200 km2. Three major edifices,
composed of andesitic and dacitic lavas and andesitic pyroclastics, have
been constructed since the beginning of the Pleistocene. The modern cone
consists of a broad cluster of lava domes built within the caldera of an
older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit.
The prominent La Olleta pyroclastic cone located on the SW flank may also
have been active in historical time. Steep headwalls of massive landslides
cut the flanks. Melting of its summit icecap during historical eruptions,
which date back to the 16th century, has resulted in devastating lahars,
including one in 1985 that was South America's deadliest eruption.



Source: Servicio Geológico Colombiano (SGC)
https://www2.sgc.gov.co/volcanes/index.html





Pacaya  | Guatemala  | 14.382°N, 90.601°W  | Summit elev. 2569 m



INSIVUMEH reported that during 29 July-3 August Strombolian explosions at
Pacayaâ??s Mackenney Crater ejected material as high as 150 m above the
crater rim. No active lava flows were visible.



Geologic Summary. Eruptions from Pacaya, one of Guatemala's most active
volcanoes, are frequently visible from Guatemala City, the nation's
capital. This complex basaltic volcano was constructed just outside the
southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A
cluster of dacitic lava domes occupies the southern caldera floor. The
post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro
Grande stratovolcanoes and the currently active Mackenney stratovolcano.
Collapse of Pacaya Viejo between 600 and 1500 years ago produced a
debris-avalanche deposit that extends 25 km onto the Pacific coastal plain
and left an arcuate somma rim inside which the modern Pacaya volcano
(Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on
the NW somma rim and was last active in the 19th century. During the past
several decades, activity has consisted of frequent strombolian eruptions
with intermittent lava flow extrusion that has partially filled in the
caldera moat and armored the flanks of Mackenney cone, punctuated by
occasional larger explosive eruptions that partially destroy the summit of
the growing young stratovolcano.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Santa Maria  | Guatemala  | 14.757°N, 91.552°W  | Summit elev. 3745 m



INSIVUMEH reported that during 29 July-4 August explosions at Santa María's
Santiaguito lava-dome complex generated ash plumes that rose 900 m above
the crater and drifted as far as 1 km W and SW. Avalanches of blocks
descended the SE, S, and SW flanks of Caliente cone; some reached the base
of the cone and were sometimes accompanied by small pyroclastic flows.
Minor ashfall was noted in areas downwind including San Marcos (10 km SW),
Loma Linda (6 km WSW), and Palajunoj (18 km SSW) during 29-30 July and 2-4
August.



Geologic Summary. Symmetrical, forest-covered Santa María volcano is part
of a chain of large stratovolcanoes that rise above the Pacific coastal
plain of Guatemala. The sharp-topped, conical profile is cut on the SW
flank by a 1.5-km-wide crater. The oval-shaped crater extends from just
below the summit to the lower flank, and was formed during a catastrophic
eruption in 1902. The renowned Plinian eruption of 1902 that devastated
much of SW Guatemala followed a long repose period after construction of
the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito
lava-dome complex has been growing at the base of the 1902 crater since
1922. Compound dome growth at Santiaguito has occurred episodically from
four vents, with activity progressing W towards the most recent, Caliente.
Dome growth has been accompanied by almost continuous minor explosions,
with periodic lava extrusion, larger explosions, pyroclastic flows, and
lahars.



Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG reported that activity at Semeru continued during 29 July-4 August,
though weather conditions often prevented visual confirmation.
White-and-gray ash plumes rose 200-400 m above the summit and drifted S on
29 July. The Alert Level remained at 2 (on a scale of 1-4), and the public
was reminded to stay outside of the general 1-km radius from the summit and
4 km on the SSE flank.



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 24-31 July. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported that nighttime incandescence at Suwanosejimaâ??s Ontake Crater
was occasionally visible during 24-31 July. Occasional eruptive events were
recorded. An explosion at 1200 on 27 July generated a gray plume that rose
as high as 2 km above the crater rim. The Tokyo VAAC reported that during
1-3 August ash plumes rose to 1.8-2.4 km (6,000-8,000 ft) a.s.l. and
drifted NW and W. The Alert Level remained at 2 (on a 5-level scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit is truncated by a large
breached crater extending to the sea on the east flank that was formed by
edifice collapse. Suwanosejima, one of Japan's most frequently active
volcanoes, was in a state of intermittent strombolian activity from Otake,
the NE summit crater, that began in 1949 and lasted until 1996, after which
periods of inactivity lengthened. The largest historical eruption took
place in 1813-14, when thick scoria deposits blanketed residential areas,
and the SW crater produced two lava flows that reached the western coast.
At the end of the eruption the summit of Otake collapsed forming a large
debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which
extends to the eastern coast. The island remained uninhabited for about 70
years after the 1813-1814 eruption. Lava flows reached the eastern coast of
the island in 1884. Only about 50 people live on the island.



Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/;

Tokyo Volcanic Ash Advisory Center (VAAC)
http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html




2-2-2-2-2-2-2-2-2-2-2-2-2


==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 3 Aug 2020 to 6 Aug 2020 (#2020-78)
***********************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux