2-2-2-2-2-2-2-2-2-2-2-2-2 From: "Kuhn, Sally" <KUHNS@xxxxxx> Smithsonian / USGS Weekly Volcanic Activity Report 27 May-2 June 2020 Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx) URL: https://volcano.si.edu/reports_weekly.cfm New Activity/Unrest: Cleveland, Chuginadak Island (USA) | Ijen, Eastern Java (Indonesia) | Karymsky, Eastern Kamchatka (Russia) Ongoing Activity: Aira, Kyushu (Japan) | Asosan, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Klyuchevskoy, Central Kamchatka (Russia) | Nevado del Ruiz, Colombia | Reventador, Ecuador | Rincon de la Vieja, Costa Rica | Semeru, Eastern Java (Indonesia) | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Whakaari/White Island, North Island (New Zealand) | Yasur, Vanuatu The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network. Note that many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest Cleveland | Chuginadak Island (USA) | 52.825°N, 169.944°W | Summit elev. 1730 m A small explosion at Cleveland was recorded at 1032 on 1 June and produced an ash plume that rose to 6.7 km (22,000 ft) a.s.l. and drifted S. The local geophysical stations and web camera were unavailable due to an ongoing network outage. AVO raised the Volcano Alert Level to Watch and the Aviation Color Code to Orange. Geologic Summary. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks. Source: US Geological Survey Alaska Volcano Observatory (AVO) https://avo.alaska.edu/ Ijen | Eastern Java (Indonesia) | 8.058°S, 114.242°E | Summit elev. 2769 m PVMBG reported that on 29 May a gas explosion at Ijen generated a plume that rose 250-500 m above the surface of the lake. According to news articles two sulfur miners heard the explosion from under the water at 1230, which created 3-m-high waves in the lake; the miners ran but one tripped and fell into the lake. Search efforts were unsuccessful after three hours and, due to weather conditions and an increased amount of gas in the crater area, had to be suspended. PVMBG noted that patterns of various types of earthquakes did not indicate increased activity during 17 Janury-29 May. The temperature of the lake water fluctuated between 24.5 and 40.3 degrees Celsius. A lot of rain in the past few months increased the volume of the lake, possibly contributing to a disruption in the system, though these seasonal changes were within normal ranges at the volcano. The Alert Level remained at 1 (on a scale of 1-4), and residents and visitors were advised to not approach the crater rim or descend to the crater floor. Geologic Summary. The Ijen volcano complex at the eastern end of Java consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The north caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi, which forms the high point of the complex. Immediately west of the Gunung Merapi stratovolcano is the historically active Kawah Ijen crater, which contains a nearly 1-km-wide, turquoise-colored, acid lake. Picturesque Kawah Ijen is the world's largest highly acidic lake and is the site of a labor-intensive sulfur mining operation in which sulfur-laden baskets are hand-carried from the crater floor. Many other post-caldera cones and craters are located within the caldera or along its rim. The largest concentration of cones forms an E-W zone across the southern side of the caldera. Coffee plantations cover much of the caldera floor, and tourists are drawn to its waterfalls, hot springs, and volcanic scenery. Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/; Inibaru https://www.inibaru.id/hits/mirip-tsunami-gelombang-3-meter-seret-seorang-penambang-di-kawah-ijen Karymsky | Eastern Kamchatka (Russia) | 54.049°N, 159.443°E | Summit elev. 1513 m KVERT reported that a thermal anomaly over Karymsky was visible in satellite images during 23 and 25-28 May. Ash plumes were also identified and drifted 185 km SE and SW on 24, 26, and 28 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Ongoing Activity Aira | Kyushu (Japan) | 31.593°N, 130.657°E | Summit elev. 1117 m JMA reported that during 25 May-1 June incandescence from Minamidake Crater (at Aira Calderaâ??s Sakurajima volcano) was visible almost nightly. The daily sulfur dioxide emission rate was high. There were three explosive events and 18 eruptive events during 25-29 May with plumes rising as high as 3 km above the crater rim. Material was ejected 800-1,100 m away from the crater. An eruption at 1337 on 1 June generated an ash plume that rose to 3 km. The Alert Level remained at 3 (on a 5-level scale). Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Asosan | Kyushu (Japan) | 32.884°N, 131.104°E | Summit elev. 1592 m JMA reported that eruptive activity at Asosan was recorded during 29 May-2 June. Volcanic plumes rose 1,000-1,600 m above the crater rim. The sulfur dioxide emission rate was high; the rate was 1,000 tons per day on 27 May. The Alert Level remained at 2 (on a scale of 1-5). Geologic Summary. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Dukono | Halmahera (Indonesia) | 1.693°N, 127.894°E | Summit elev. 1229 m Based on satellite and wind model data, and information from PVMBG, the Darwin VAAC reported that during 27 May-2 June ash plumes from Dukono rose to 2.1 km (7,000 ft) a.s.l. and drifted NW and W. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Sources: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/; Darwin Volcanic Ash Advisory Centre (VAAC) http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml Ebeko | Paramushir Island (Russia) | 50.686°N, 156.014°E | Summit elev. 1103 m Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 22-29 May that sent ash plumes up to 4.6 km (15,100 ft) a.s.l. The plumes drifted E and 60 km SE, causing ashfall in Severo-Kurilsk on 22 and 24 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Klyuchevskoy | Central Kamchatka (Russia) | 56.056°N, 160.642°E | Summit elev. 4754 m KVERT reported that Strombolian activity at Klyuchevskoy was visible during 22-29 May along with a bright thermal anomaly identified in satellite images. A lava flow continued to advance down the Apakhonchich drainage on the SE flank. Gas-and-steam plumes with some ash drifted over 200 km E during 22 and 25-28 May. The Aviation Color Code remained at Orange. Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Nevado del Ruiz | Colombia | 4.892°N, 75.324°W | Summit elev. 5279 m Servicio Geológico Colombianoâ??s (SGC) Observatorio Vulcanológico y Sismológico de Manizales reported that during 27 May-2 June seismicity at Nevado del Ruiz was at similar levels to the week before, with signals dominated by periods of continuous volcanic tremor, tremor pulses, long-period, and very-long-period earthquakes. Some of the earthquakes were associated with minor gas-and-ash emissions that drifted N and were recorded by the webcam. The highest gas-and-steam plume rose about 1.3 km above the summit, recorded on 29 May. The Alert Level remained at 3 (Yellow; the second lowest level on a four-color scale). Geologic Summary. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption. Source: Servicio Geológico Colombiano (SGC) https://www2.sgc.gov.co/volcanes/index.html Reventador | Ecuador | 0.077°S, 77.656°W | Summit elev. 3562 m IG reported that during 27 May-2 June seismic data from Reventadorâ??s network indicated a high level of seismic activity, including explosions, long-period earthquakes, and signals indicating emissions. Gas, steam, and ash emissions observed daily with the webcam or reported by the Washington VAAC rose as high as 1.4 km above the summit crater and drifted N, NW, W, and SW. Cloudy weather sometimes prevented views of the volcano. Incandescent blocks rolled as far as 500 m down the S and E flanks during 27-28 May. Nighttime crater incandescence was visible during 27-28 and 30 May, as well as during 1-2 June. Geologic Summary. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents. Source: Instituto GeofÃsico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ Rincon de la Vieja | Costa Rica | 10.83°N, 85.324°W | Summit elev. 1916 m OVSICORI-UNA reported that periodic phreatic explosions at Rincón de la Vieja continued to be recorded by the seismic network and webcams during 26-29 May and 1-2 June. Some of the events were not visually confirmed by webcams because of weather conditions or darkness. On 26 May a minor amount of ash fell in areas to the NW including in Los Angeles of Quebrada Grande, and Liberia. A phreatic eruption at 1521 on 27 May generated a plume that rose 1.5 km above the crater rim. At 1524 on 28 May an event generated a plume that rose 3 km above the rim and drifted W. Phreatic eruptions at 1745 on 1 June, and at 1446 and 1701 on 2 June produced plumes that rose 1-2 km. Geologic Summary. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene GuachipelÃn caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa MarÃa volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 RÃo Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater. Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/ Semeru | Eastern Java (Indonesia) | 8.108°S, 112.922°E | Summit elev. 3657 m PVMBG reported that the eruption at Semeru continued during 27 May-2 June, though sometimes weather conditions prevented visual confirmation. Ash plumes rose 300-500 m above the crater and drifted N, W, and SW on most days. White plumes rose 300 m and drifted N during 26-27 May. The Alert Level remained at 2 (on a scale of 1-4), and the public was reminded to stay outside of the general 1-km radius from the summit and 4 km on the SSE flank. Geologic Summary. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano. Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://vsi.esdm.go.id/ Sheveluch | Central Kamchatka (Russia) | 56.653°N, 161.36°E | Summit elev. 3283 m KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 22-29 May. The Aviation Color Code remained at Orange (the second highest level on a four-color scale). Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php Suwanosejima | Ryukyu Islands (Japan) | 29.638°N, 129.714°E | Summit elev. 796 m JMA reported that nighttime incandescence at Suwanosejimaâ??s Ontake Crater was visible during 22-29 May. Five explosions were recorded, producing plumes that rose as high as 700 m above the crater rim. The Alert Level remained at 2 (on a 5-level scale). Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/ Whakaari/White Island | North Island (New Zealand) | 37.52°S, 177.18°E | Summit elev. 294 m On 29 May GeoNet reported that activity at Whakaari/White Island continued in an elevated state of unrest. Gas and observations flights have resumed; sulfur dioxide and carbon dioxide gas flux increased from 20 to 27 May, possibly indicating a new body of magma at a shallow depth. Areas of lava remained hot on 20 May with temperatures around 500 degrees Celsius. Incandescence from gas emissions around the lobes was visible in nighttime webcam images. Tremor levels remained low overall, punctuated with occasional episodes of slightly elevated tremor. Some shallow-source volcanic earthquakes were recorded. Satellite-based measurements showed several centimeters of subsidence since the December 2019 eruption. The Volcanic Alert Level remained at 2 and the Aviation Color Code remained at Yellow. Geologic Summary. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769. Source: GeoNet http://www.geonet.org.nz/ Yasur | Vanuatu | 19.532°S, 169.447°E | Summit elev. 361 m On 28 May the Vanuatu Meteorology and Geo-Hazards Department (VMGD) reported that recent visual observations at Yasur confirmed ongoing explosions and gas-and-ash emissions. The report noted that some of the explosions could be intense and eject bombs outside of the summit crater. The Alert Level remained at 2 (on a scale of 0-4). VMGD reminded residents and tourists that hazardous areas were near and around the volcanic crater, within a 600-m-radius exclusion zone, and that volcanic ash and gas could reach areas impacted by trade winds. Geologic Summary. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century. Source: Vanuatu Meteorology and Geo-Hazards Department (VMGD) http://www.geohazards.gov.vu/ 2-2-2-2-2-2-2-2-2-2-2-2-2 ============================================================== Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI). ASU - http://www.asu.edu/ PSU - http://pdx.edu/ GVP - http://www.volcano.si.edu/ IAVCEI - https://www.iavceivolcano.org/ To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx. To contribute to the volcano list, send your message to: volcano@xxxxxxx. Please do not send attachments. ============================================================== ------------------------------ End of Volcano Digest - 2 Jun 2020 to 3 Jun 2020 (#2020-57) ***********************************************************