Smithsonian / USGS Weekly Volcanic Activity Report 6-12 May 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



3-3-3-3-3-3-3-3-3-3-3-3-3


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

6-12 May 2020



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





Ongoing Activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  |
Cleveland, Chuginadak Island (USA)  | Dukono, Halmahera (Indonesia)  |
Ebeko, Paramushir Island (Russia)  | Etna, Sicily (Italy)  | Ibu, Halmahera
(Indonesia)  | Klyuchevskoy, Central Kamchatka (Russia)  | Popocatepetl,
Mexico  | Rincon de la Vieja, Costa Rica  | Sangay, Ecuador  | Sangeang
Api, Indonesia  | Semeru, Eastern Java (Indonesia)  | Sheveluch, Central
Kamchatka (Russia)  | Suwanosejima, Ryukyu Islands (Japan)





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 4-11 May incandescence from Minamidake Crater (at
Aira Calderaâ??s Sakurajima volcano) was visible nightly. There were four
eruptive events with plumes rising as high as 2.3 km above the crater rim.
Three explosions were recorded; an explosion at 0531 on 9 May produced an
ash plume that rose 4.2 km and ejected material 600-900 m away from the
crater. JMA noted that ash plumes had not risen higher than 4 km since 8
November 2019. The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that eruptive activity at Asosan was recorded during 4-11 May.
Volcanic plumes rose 700-900 m above the crater rim and caused ashfall in
areas downwind. The sulfur dioxide emission rate was high at 3,000-4,800
tons per day during 7-8 May. The Alert Level remained at 2 (on a scale of
1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev.
1730 m



AVO lowered both the Volcano Alert Level and the Aviation Color Code for
Cleveland to Unassigned on 7 May, noting that explosive activity on 9
January 2019 (and subsequent lava extrusion in the summit crater) was
followed by an overall decrease in detected surface temperature and no
further surface changes.



Geologic Summary. The beautifully symmetrical Mount Cleveland stratovolcano
is situated at the western end of the uninhabited Chuginadak Island. It
lies SE across Carlisle Pass strait from Carlisle volcano and NE across
Chuginadak Pass strait from Herbert volcano. Joined to the rest of
Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands
of the Four Mountains group and is one of the most active of the Aleutian
Islands. The native name, Chuginadak, refers to the Aleut goddess of fire,
who was thought to reside on the volcano. Numerous large lava flows descend
the steep-sided flanks. It is possible that some 18th-to-19th century
eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et
al., 1998). In 1944 Cleveland produced the only known fatality from an
Aleutian eruption. Recent eruptions have been characterized by short-lived
explosive ash emissions, at times accompanied by lava fountaining and lava
flows down the flanks.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, the Darwin VAAC reported that
during 6-12 May ash plumes from Dukono rose to 2.1 km (7,000 ft) a.s.l. and
drifted NE, E, and SE. The Alert Level remained at 2 (on a scale of 1-4),
and the public was warned to remain outside of the 2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 1-8 May that sent ash plumes up to 2.6 km
(8,500 ft) a.s.l. Ash plumes drifted E, causing ashfall in Severo-Kurilsk
during 3-5 May. A thermal anomaly was identified in satellite data on 3
May. The Aviation Color Code remained at Orange (the second highest level
on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Etna  | Sicily (Italy)  | 37.748°N, 14.999°E  | Summit elev. 3320 m



INGV reported that on 5 May increasing and pulsating ash emissions at
Etnaâ??s New Southeast Crater (NSEC) formed a plume that drifted SSE. The
activity may have concurrently occurred with the enlargement of vent number
3. Explosive activity at Voragine Crater (VOR), with minor ash emissions
and occasional visible shreds of incandescent material, was relatively mild
and discontinuous. During a field inspection on 8 May, volcanologists
observed that the main cone was almost unchanged and produced modest ash
emissions. Strong explosive activity at a cone located E of the main cone
produced a lot of ash, and ejected coarse material that fell on the W edge
of VOR as well as on the S terrace of Bocca Nuova Crater. Activity at NSEC
again increased; on 10 May Strombolian explosions ejected material out of
the crater and onto the flanks. Concurrently, increased activity in VOR was
characterized by the ejection of ballistics beyond its crater rim. After a
few hours Strombolian activity in NSEC significantly decreased and
explosive activity in VOR was both less intense and less frequent.



Geologic Summary. Mount Etna, towering above Catania, Sicily's second
largest city, has one of the world's longest documented records of
historical volcanism, dating back to 1500 BCE. Historical lava flows of
basaltic composition cover much of the surface of this massive volcano,
whose edifice is the highest and most voluminous in Italy. The Mongibello
stratovolcano, truncated by several small calderas, was constructed during
the late Pleistocene and Holocene over an older shield volcano. The most
prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km
horseshoe-shaped caldera open to the east. Two styles of eruptive activity
typically occur, sometimes simultaneously. Persistent explosive eruptions,
sometimes with minor lava emissions, take place from one or more summit
craters. Flank vents, typically with higher effusion rates, are less
frequently active and originate from fissures that open progressively
downward from near the summit (usually accompanied by Strombolian eruptions
at the upper end). Cinder cones are commonly constructed over the vents of
lower-flank lava flows. Lava flows extend to the foot of the volcano on all
sides and have reached the sea over a broad area on the SE flank.



Source: Sezione di Catania - Osservatorio Etneo (INGV)
http://www.ct.ingv.it/





Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m



The Darwin VAAC reported that on 9 May an ash plume from Ibu rose to 2.1 km
(7,000 ft) a.s.l. and drifted SE based on satellite images and weather
models. On 12 May an ash plume rose to 2.1 km a.s.l. and drifted N. The
Alert Level remained at 2 (on a scale of 1-4), and the public was warned to
stay at least 2 km away from the active crater, and 3.5 km away on the N
side.



Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along
the NW coast of Halmahera Island has large nested summit craters. The inner
crater, 1 km wide and 400 m deep, contained several small crater lakes
through much of historical time. The outer crater, 1.2 km wide, is breached
on the north side, creating a steep-walled valley. A large parasitic cone
is located ENE of the summit. A smaller one to the WSW has fed a lava flow
down the W flank. A group of maars is located below the N and W flanks.
Only a few eruptions have been recorded in historical time, the first a
small explosive eruption from the summit crater in 1911. An eruption
producing a lava dome that eventually covered much of the floor of the
inner summit crater began in December 1998.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that Strombolian activity at Klyuchevskoy was visible during
1-8 May along with a bright thermal anomaly identified in satellite images.
A lava flow continued to advance down the Apakhonchich drainage on the SE
flank. An ash plume drifted 22 km SE on 2 May. The Aviation Color Code
remained at Orange.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Popocatepetl  | Mexico  | 19.023°N, 98.622°W  | Summit elev. 5393 m



CENAPRED reported that each day during 5-12 May there were 94-157
steam-and-gas emissions from Popocatépetl, some of which contained minor
amounts of ash. Minor explosions were recorded at 1534 and 1609 on 7 May,
at 1648 on 10 May, at 1723 and 2351 on 11 May, and at 0302 and 0604 on 12
May. Crater incandescence was visible some nights. The Alert Level remained
at Yellow, Phase Two (middle level on a three-color scale).



Geologic Summary. Volcán Popocatépetl, whose name is the Aztec word for
smoking mountain, rises 70 km SE of Mexico City to form North America's
2nd-highest volcano. The glacier-clad stratovolcano contains a
steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is
modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier
volcano. At least three previous major cones were destroyed by
gravitational failure during the Pleistocene, producing massive
debris-avalanche deposits covering broad areas to the south. The modern
volcano was constructed south of the late-Pleistocene to Holocene El Fraile
cone. Three major Plinian eruptions, the most recent of which took place
about 800 CE, have occurred since the mid-Holocene, accompanied by
pyroclastic flows and voluminous lahars that swept basins below the
volcano. Frequent historical eruptions, first recorded in Aztec codices,
have occurred since Pre-Columbian time.



Source: Centro Nacional de Prevencion de Desastres (CENAPRED)
https://www.gob.mx/cenapred





Rincon de la Vieja  | Costa Rica  | 10.83°N, 85.324°W  | Summit elev. 1916 m



OVSICORI-UNA reported periodic phreatic explosions at Rincón de la Vieja
during 6-12 May. Phreatic explosions were recorded at 1624 on 6 May and
0343 on 8 May, though inclement weather conditions hindered visual
confirmation. Two small emissions were noted at 1850 on 8 May and at 0020
on 9 May. An event at 1925 on 9 May generated a gas-and-steam plume that
rose almost 2 km above the crater rim.



Geologic Summary. Rincón de la Vieja, the largest volcano in NW Costa Rica,
is a remote volcanic complex in the Guanacaste Range. The volcano consists
of an elongated, arcuate NW-SE-trending ridge that was constructed within
the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed
on the south side. Sometimes known as the "Colossus of Guanacaste," it has
an estimated volume of 130 km3 and contains at least nine major eruptive
centers. Activity has migrated to the SE, where the youngest-looking
craters are located. The twin cone of 1916-m-high Santa María volcano, the
highest peak of the complex, is located at the eastern end of a smaller,
5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing
the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major
magmatic eruption. All subsequent eruptions, including numerous historical
eruptions possibly dating back to the 16th century, have been from the
prominent active crater containing a 500-m-wide acid lake located ENE of
Von Seebach crater.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m



IG reported a high level of activity at Sangay during 6-12 May. Weather
clouds often prevented visual observations of the volcano; according to
Washington VAAC notices ash plumes rose 870-1,470 m above the summit and
drifted W and SW during 6 and 10-12 May. Incandescent blocks were seen
descending the SE flank during breaks in cloud cover on 6, 8, and 11 May.
Signals indicating lahars were recorded by the seismic network on 7 and 9
May.



Geologic Summary. The isolated Sangay volcano, located east of the Andean
crest, is the southernmost of Ecuador's volcanoes and its most active. The
steep-sided, glacier-covered, dominantly andesitic volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed by
collapse to the east, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000 years
ago. It towers above the tropical jungle on the east side; on the other
sides flat plains of ash have been sculpted by heavy rains into
steep-walled canyons up to 600 m deep. The earliest report of a historical
eruption was in 1628. More or less continuous eruptions were reported from
1728 until 1916, and again from 1934 to the present. The almost constant
activity has caused frequent changes to the morphology of the summit crater
complex.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Sangeang Api  | Indonesia  | 8.2°S, 119.07°E  | Summit elev. 1912 m



The Darwin VAAC reported that on 10 May a discrete ash emission from
Sangeang Api rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted E.
The Alert Level remained at 2 (on a scale of 1-4).



Geologic Summary. Sangeang Api volcano, one of the most active in the
Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of
Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic
cones, Doro Api and Doro Mantoi, were constructed in the center and on the
eastern rim, respectively, of an older, largely obscured caldera. Flank
vents occur on the south side of Doro Mantoi and near the northern coast.
Intermittent historical eruptions have been recorded since 1512, most of
them during in the 20th century.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG reported that the eruption at Semeru continued during 4-10 May.
Eruptive events produced dense white-gray ash plumes that rose 200-500 m
above the summit. Incandescent material from the ends of lava flows
descended 500-1,000 m in the Kembar and Kobokan drainages (on the S flank),
reaching a maximum distance of 2 km from the crater. The Alert Level
remained at 2 (on a scale of 1-4), and the public was reminded to stay
outside of the general 1-km radius from the summit and 4 km on the SSE
flank.



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 1-8 May. The Aviation Color Code remained at Orange
(the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported that during 1-8 May explosions occurred twice a day at
Suwanosejimaâ??s Ontake Crater and produced plumes that rose as high as 1 km
above the crater rim. Material was ejected 400 m from the crater. Crater
incandescence was visible nightly. Rumbling sounds were noted in a village
4 km SSW. The Alert Level remained at 2 (on a 5-level scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit of the volcano is truncated
by a large breached crater extending to the sea on the east flank that was
formed by edifice collapse. Suwanosejima, one of Japan's most frequently
active volcanoes, was in a state of intermittent strombolian activity from
Otake, the NE summit crater, that began in 1949 and lasted until 1996,
after which periods of inactivity lengthened. The largest historical
eruption took place in 1813-14, when thick scoria deposits blanketed
residential areas, and the SW crater produced two lava flows that reached
the western coast. At the end of the eruption the summit of Otake collapsed
forming a large debris avalanche and creating the horseshoe-shaped Sakuchi
caldera, which extends to the eastern coast. The island remained
uninhabited for about 70 years after the 1813-1814 eruption. Lava flows
reached the eastern coast of the island in 1884. Only about 50 people live
on the island.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/




3-3-3-3-3-3-3-3-3-3-3-3-3


==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 11 May 2020 to 13 May 2020 (#2020-49)
*************************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux