Smithsonian / USGS Weekly Volcanic Activity Report 1-7 April 2020

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



2-2-2-2-2-2-2-2-2-2-2-2-2


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

1-7 April 2020



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Kerinci, Indonesia  | Piton de la Fournaise, Reunion
Island (France)  | Semeru, Eastern Java (Indonesia)  | Soputan, Sulawesi
(Indonesia)



Ongoing Activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  | Dukono,
Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Ibu,
Halmahera (Indonesia)  | Karangetang, Siau Island (Indonesia)  |
Klyuchevskoy, Central Kamchatka (Russia)  | Kuchinoerabujima, Ryukyu
Islands (Japan)  | Merapi, Central Java (Indonesia)  | Nevados de Chillan,
Chile  | Rincon de la Vieja, Costa Rica  | Sangay, Ecuador  |
Semisopochnoi, United States  | Sheveluch, Central Kamchatka (Russia)  |
Shishaldin, Fox Islands (USA)  | Suwanosejima, Ryukyu Islands (Japan)  |
Yasur, Vanuatu





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Kerinci  | Indonesia  | 1.697°S, 101.264°E  | Summit elev. 3800 m



PVMBG reported that at 0854 on 6 April a brown ash emission rose 500 m
above Kerinciâ??s summit and drifted NNW. Another brown emission was visible
the next day at 0717, rising at least 400 m and drifting ENE. The Alert
Level remained at 2 (on a scale of 1-4), and the public was warned to
remain outside of the 3-km exclusion zone.



Geologic Summary. Gunung Kerinci in central Sumatra forms Indonesia's
highest volcano and is one of the most active in Sumatra. It is capped by
an unvegetated young summit cone that was constructed NE of an older crater
remnant. There is a deep 600-m-wide summit crater often partially filled by
a small crater lake that lies on the NE crater floor, opposite the SW-rim
summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above
surrounding plains and is elongated in a N-S direction. Frequently active,
Kerinci has been the source of numerous moderate explosive eruptions since
its first recorded eruption in 1838.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Piton de la Fournaise  | Reunion Island (France)  | 21.244°S, 55.708°E  |
Summit elev. 2632 m



OVPF reported that a seismic crisis at Piton de la Fournaise was recorded
during 0815-0851 on 2 April and was accompanied by rapid deformation (10-20
microradians). After a lull in activity for about three hours, volcanic
tremor beginning at 1220 indicated the likely arrival of magma at the
surface, though weather conditions prevented visual confirmation. During an
overflight that day around 1500 observers confirmed a fissure eruption
around 1,900 m elevation on the E flank about 1.7 km from the center of
Dolomieu Crater, and just below the 10-16 February eruption site. Lava
fountains rose no more than 30 m. By 0625 on 3 April lava flows had
traveled as far as the top of Grandes Pentes, at 1,000 m elevation and 3.8
km from RN2 (the national road). By 1500 no significant deformation had
been recorded and five volcano-tectonic earthquakes were located less than
2 km deep. The report noted that the weak seismicity and minor deformation
indicated that the magma followed an existing pathway while propagating
towards the surface.



The average lava-flow rate during 3-4 April was between 2 and 45 cubic
meters per second with an average around 7-10 cubic meters per second. Lava
flows continued to advance, reaching 800 m elevation. During 0400-0900 on 5
April the seismic network recorded 10 volcano-tectonic earthquakes (less
than 2 km deep) prompting a request for an overflight and an inspection of
the flow field. The distal end of the lava flow was located at 550 m
elevation, about 2.7 km from RN2. The lava-flow rate had increased to
between 3 and 63 cubic meters per second with an average around 24.2 cubic
meters per second on 5 April and increased again to an estimate average of
30 cubic meters per second on 6 April. The longest flow had stopped
advancing with activity focused on a new, more southern lava flow. By 1000
on 6 April the southern lava flow had descended to 360 m elevation, or
about 2 km from RN2, as mapped during an overflight. Large quantities of
Pele's hair were located in areas to the N, especially in La Plaine des
Cafres. A sharp decrease in tremor intensity was recorded around 1330 on 6
April, signaling the end of the eruption.



Geologic Summary. The massive Piton de la Fournaise basaltic shield volcano
on the French island of Réunion in the western Indian Ocean is one of the
world's most active volcanoes. Much of its more than 530,000-year history
overlapped with eruptions of the deeply dissected Piton des Neiges shield
volcano to the NW. Three calderas formed at about 250,000, 65,000, and less
than 5000 years ago by progressive eastward slumping of the volcano.
Numerous pyroclastic cones dot the floor of the calderas and their outer
flanks. Most historical eruptions have originated from the summit and
flanks of Dolomieu, a 400-m-high lava shield that has grown within the
youngest caldera, which is 8 km wide and breached to below sea level on the
eastern side. More than 150 eruptions, most of which have produced fluid
basaltic lava flows, have occurred since the 17th century. Only six
eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from
fissures on the outer flanks of the caldera. The Piton de la Fournaise
Volcano Observatory, one of several operated by the Institut de Physique du
Globe de Paris, monitors this very active volcano.



Source: Observatoire Volcanologique du Piton de la Fournaise (OVPF)
http://www.ipgp.fr/





Semeru  | Eastern Java (Indonesia)  | 8.108°S, 112.922°E  | Summit elev.
3657 m



PVMBG reported that during 30 March-5 April white plumes rose 100 m above
Semeruâ??s summit. Incandescent material was ejected 10-50 m above the
Jonggring-Seloko Crater. Incandescent material from the ends of lava flows
descended 700 m, reaching a maximum distance of 950 m from the crater. The
Alert Level remained at 2 (on a scale of 1-4), and the public was reminded
to stay outside of the general 1-km radius from the summit and 4 km on the
SSE flank.



Geologic Summary. Semeru, the highest volcano on Java, and one of its most
active, lies at the southern end of a volcanic massif extending north to
the Tengger caldera. The steep-sided volcano, also referred to as Mahameru
(Great Mountain), rises above coastal plains to the south. Gunung Semeru
was constructed south of the overlapping Ajek-ajek and Jambangan calderas.
A line of lake-filled maars was constructed along a N-S trend cutting
through the summit, and cinder cones and lava domes occupy the eastern and
NE flanks. Summit topography is complicated by the shifting of craters from
NW to SE. Frequent 19th and 20th century eruptions were dominated by
small-to-moderate explosions from the summit crater, with occasional lava
flows and larger explosive eruptions accompanied by pyroclastic flows that
have reached the lower flanks of the volcano.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Soputan  | Sulawesi (Indonesia)  | 1.112°N, 124.737°E  | Summit elev. 1785 m



The Darwin VAAC reported that on 2 April an ash plume from Soputan was seen
by a pilot drifting W at an altitude of 4.3 km (14,000 ft) a.s.l.



Geologic Summary. The Soputan stratovolcano on the southern rim of the
Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of
Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano
is located SW of Riendengan-Sempu, which some workers have included with
Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was
constructed at the southern end of a SSW-NNE trending line of vents. During
historical time the locus of eruptions has included both the summit crater
and Aeseput, a prominent NE-flank vent that formed in 1906 and was the
source of intermittent major lava flows until 1924.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 30 March-6 April incandescence from Minamidake
Crater (at Aira Calderaâ??s Sakurajima volcano) was visible nightly. The
seismic network recorded 22 eruptive events and one explosion (at 1558 on 4
April). The highest plume during the period rose to 3.8 km above the crater
rim, visible at 1621 on 4 April. Material was ejected 500-900 m away from
the crater. The Alert Level remained at 3 (on a 5-level scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that eruptive activity at Asosan was recorded during 9-16
March. Gray-to-white ash plumes rose as high as 1 km above the crater rim
and caused ashfall in areas downwind. The sulfur dioxide emission rate was
high; the rate on 2 April was 1,900 tons per day. The Alert Level remained
at 2 (on a scale of 1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, the Darwin VAAC reported that
during 1-7 April ash plumes from Dukono rose to 1.8-2.4 km (6,000-8,000 ft)
a.s.l. and drifted in multiple directions. The Alert Level remained at 2
(on a scale of 1-4), and the public was warned to remain outside of the
2-km exclusion zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions during 29 and 31 March and 1-2 April that sent
ash plumes up to 2.2 km (7,200 ft) a.s.l. Ash plumes drifted NE and E,
causing ashfall in Severo-Kurilsk on 1 April. A thermal anomaly was
identified in satellite images during 30-31 March. The Aviation Color Code
remained at Orange (the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m



The Darwin VAAC reported that on 2 April an ash plume from Ibu rose to 2.1
km (7,000 ft) a.s.l. and drifted SW based on satellite images and weather
models. On 7 April an ash plume rose to 1.8 km (6,000 ft) a.s.l. and
drifted S. The Alert Level remained at 2 (on a scale of 1-4), and the
public was warned to stay at least 2 km away from the active crater, and
3.5 km away on the N side.



Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along
the NW coast of Halmahera Island has large nested summit craters. The inner
crater, 1 km wide and 400 m deep, contained several small crater lakes
through much of historical time. The outer crater, 1.2 km wide, is breached
on the north side, creating a steep-walled valley. A large parasitic cone
is located ENE of the summit. A smaller one to the WSW has fed a lava flow
down the W flank. A group of maars is located below the N and W flanks.
Only a few eruptions have been recorded in historical time, the first a
small explosive eruption from the summit crater in 1911. An eruption
producing a lava dome that eventually covered much of the floor of the
inner summit crater began in December 1998.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Karangetang  | Siau Island (Indonesia)  | 2.781°N, 125.407°E  | Summit
elev. 1797 m



PVMBG reported that during 30 March-5 April lava continued to effuse from
Karangetangâ??s Main Crater (S), traveling as far as 1.8 km down the Nanitu,
Pangi, and Sense drainages on the SW and W flanks. Sometimes dense white
plumes rose up to 300 m above the summit; foggy weather occasionally
prevented observations. Incandescence from both summit craters was visible
at night. The Alert Level remained at 2 (on a scale of 1-4).



Geologic Summary. Karangetang (Api Siau) volcano lies at the northern end
of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi
island. The stratovolcano contains five summit craters along a N-S line. It
is one of Indonesia's most active volcanoes, with more than 40 eruptions
recorded since 1675 and many additional small eruptions that were not
documented in the historical record (Catalog of Active Volcanoes of the
World: Neumann van Padang, 1951). Twentieth-century eruptions have included
frequent explosive activity sometimes accompanied by pyroclastic flows and
lahars. Lava dome growth has occurred in the summit craters; collapse of
lava flow fronts have produced pyroclastic flows.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that Strombolian activity at Klyuchevskoy was visible during
27 March-3 April, and a bright thermal anomaly was identified in satellite
images those same days except for 1 April. Vulcanian activity was visible
during 29-20 March; ash plumes drifted as far as 455 km E and NE at
altitudes of 5.5-6 km (18,000-19,700 ft) a.s.l. on those same days. The
Aviation Color Code remained at Orange.



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Kuchinoerabujima  | Ryukyu Islands (Japan)  | 30.443°N, 130.217°E  | Summit
elev. 657 m



JMA reported that during 30 March-3 April white plumes rose 500 m above the
rim of Kuchinoerabujimaâ??s Shindake Crater. Sulfur dioxide emissions were at
high levels. Very small eruptive events during 5-6 April generated plumes
that rose 900 m and merged into weather clouds. The Alert Level remained at
3 (the middle level on a scale of 1-5).



Geologic Summary. A group of young stratovolcanoes forms the eastern end of
the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu
Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones
were erupted from south to north, respectively, forming a composite cone
with multiple craters. The youngest cone, centrally-located Shindake,
formed after the NW side of Furudake was breached by an explosion. All
historical eruptions have occurred from Shindake, although a lava flow from
the S flank of Furudake that reached the coast has a very fresh morphology.
Frequent explosive eruptions have taken place from Shindake since 1840; the
largest of these was in December 1933. Several villages on the 4 x 12 km
island are located within a few kilometers of the active crater and have
suffered damage from eruptions.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Merapi  | Central Java (Indonesia)  | 7.54°S, 110.446°E  | Summit elev.
2910 m



PVMBG and BPPTKG reported that incandescence from Merapiâ??s summit crater
was visible at night and in the morning during 30 March-5 April. White
plumes with variable densities rose as high as 600 m above the summit. An
eruption at 1510 on 2 April generated an ash plume that rose 3 km above the
summit. The morphology of the lava dome in the summit crater changed
slightly based on a comparison of photos (taken from the DELES 3 station,
SW) from 15 March to 2 April. The Alert Level remained at 2 (on a scale of
1-4), and residents were warned to stay outside of the 3-km exclusion zone.



Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in
one of the world's most densely populated areas and dominates the landscape
immediately north of the major city of Yogyakarta. It is the youngest and
southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth
of Old Merapi during the Pleistocene ended with major edifice collapse
perhaps about 2000 years ago, leaving a large arcuate scarp cutting the
eroded older Batulawang volcano. Subsequently growth of the steep-sided
Young Merapi edifice, its upper part unvegetated due to frequent eruptive
activity, began SW of the earlier collapse scarp. Pyroclastic flows and
lahars accompanying growth and collapse of the steep-sided active summit
lava dome have devastated cultivated lands on the western-to-southern
flanks and caused many fatalities during historical time.



Sources: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi
(BPPTKG) http://www.merapi.bgl.esdm.go.id/;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Nevados de Chillan  | Chile  | 36.868°S, 71.378°W  | Summit elev. 3180 m



The Buenos Aires VAAC reported that during 1-2 and 4-6 April ash plumes
from Nevados de Chillán rose to altitudes of 3.7-4.3 km (12,000-14,000 ft)
a.s.l. and drifted N, NE, E, and SE, based on webcam and satellite images.



Geologic Summary. The compound volcano of Nevados de Chillán is one of the
most active of the Central Andes. Three late-Pleistocene to Holocene
stratovolcanoes were constructed along a NNW-SSE line within three nested
Pleistocene calderas, which produced ignimbrite sheets extending more than
100 km into the Central Depression of Chile. The largest stratovolcano,
dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW
end of the group. Volcán Viejo (Volcán Chillán), which was the main active
vent during the 17th-19th centuries, occupies the SE end. The new Volcán
Nuevo lava-dome complex formed between 1906 and 1945 between the two
volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau
dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and
eventually exceeded its height.



Source: Buenos Aires Volcanic Ash Advisory Center (VAAC)
http://www.smn.gov.ar/vaac/buenosaires/productos.php





Rincon de la Vieja  | Costa Rica  | 10.83°N, 85.324°W  | Summit elev. 1916 m



OVSICORI-UNA reported that occasional low-frequency and low-amplitude
volcanic earthquakes were ongoing at Rincón de la Vieja. A steam explosion
was recorded at 0240 on 1 April. An eruption at 0824 on 4 April generated a
plume that rose 1 km above the crater rim. Continuous activity during part
of 6-7 April produced emissions rising 50 m above the crater rim.



Geologic Summary. Rincón de la Vieja, the largest volcano in NW Costa Rica,
is a remote volcanic complex in the Guanacaste Range. The volcano consists
of an elongated, arcuate NW-SE-trending ridge that was constructed within
the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed
on the south side. Sometimes known as the "Colossus of Guanacaste," it has
an estimated volume of 130 km3 and contains at least nine major eruptive
centers. Activity has migrated to the SE, where the youngest-looking
craters are located. The twin cone of 1916-m-high Santa María volcano, the
highest peak of the complex, is located at the eastern end of a smaller,
5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing
the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major
magmatic eruption. All subsequent eruptions, including numerous historical
eruptions possibly dating back to the 16th century, have been from the
prominent active crater containing a 500-m-wide acid lake located ENE of
Von Seebach crater.



Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad
Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/





Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m



IG reported a high level of activity at Sangay during 1-7 April. Weather
clouds often prevented visual observations of the volcano; according to
Washington VAAC notices ash plumes rose 570 m above the summit and drifted
NW, W, and SW during 2-4 April. Signals indicating lahars were recorded by
the seismic network on 2 and 5 April. Incandescent blocks were seen
descending the S flank during a break in cloud cover on 4 April.



Geologic Summary. The isolated Sangay volcano, located east of the Andean
crest, is the southernmost of Ecuador's volcanoes and its most active. The
steep-sided, glacier-covered, dominantly andesitic volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed by
collapse to the east, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000 years
ago. It towers above the tropical jungle on the east side; on the other
sides flat plains of ash have been sculpted by heavy rains into
steep-walled canyons up to 600 m deep. The earliest report of a historical
eruption was in 1628. More or less continuous eruptions were reported from
1728 until 1916, and again from 1934 to the present. The almost constant
activity has caused frequent changes to the morphology of the summit crater
complex.



Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)
http://www.igepn.edu.ec/





Semisopochnoi  | United States  | 51.93°N, 179.58°E  | Summit elev. 1221 m



On 1 April AVO reported that seismic, infrasound, and satellite data
collected during the previous two weeks indicated no signs of eruptive
activity at Semisopochnoi; the Aviation Color Code was lowered to Yellow
and the Volcano Alert Level was lowered to Advisory. A crater lake and
robust steam plume were both identified in recent satellite images.



Geologic Summary. Semisopochnoi, the largest subaerial volcano of the
western Aleutians, is 20 km wide at sea level and contains an 8-km-wide
caldera. It formed as a result of collapse of a low-angle, dominantly
basaltic volcano following the eruption of a large volume of dacitic
pumice. The high point of the island is 1221-m-high Anvil Peak, a
double-peaked late-Pleistocene cone that forms much of the island's
northern part. The three-peaked 774-m-high Mount Cerberus volcano was
constructed during the Holocene within the caldera. Each of the peaks
contains a summit crater; lava flows on the northern flank of Cerberus
appear younger than those on the southern side. Other post-caldera
volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the
caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake
in the NE part of the caldera. Most documented historical eruptions have
originated from Cerberus, although Coats (1950) considered that both
Sugarloaf and Lakeshore Cone within the caldera could have been active
during historical time.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluch was identified in
satellite images during 27 March-3 April. The Aviation Color Code remained
at Orange (the second highest level on a four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Shishaldin  | Fox Islands (USA)  | 54.756°N, 163.97°W  | Summit elev. 2857 m



AVO reported elevated seismicity at Shishaldin during 1-7 April
characterized by weak continuous tremor and occasional low-frequency
earthquakes. The webcam recorded steam plumes rising from the summit crater
on 1 April. Weakly elevated surface temperatures were visible in satellite
images on a few days. The Volcano Alert Level remained at Watch and the
Aviation Color Code remained at Orange.



Geologic Summary. The beautifully symmetrical Shishaldin is the highest and
one of the most active volcanoes of the Aleutian Islands. The
glacier-covered volcano is the westernmost of three large stratovolcanoes
along an E-W line in the eastern half of Unimak Island. The Aleuts named
the volcano Sisquk, meaning "mountain which points the way when I am lost."
A steam plume often rises from its small summit crater. Constructed atop an
older glacially dissected volcano, it is largely basaltic in composition.
Remnants of an older ancestral volcano are exposed on the W and NE sides at
1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its
NW flank, which is blanketed by massive aa lava flows. Frequent explosive
activity, primarily consisting of Strombolian ash eruptions from the small
summit crater, but sometimes producing lava flows, has been recorded since
the 18th century.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported that during 27 March-3 April incandescence from Suwanosejimaâ??s
Ontake Crater was visible nightly. An eruptive event on 2 April produced a
grayish-white plume that rose 800 m above the crater rim; ringing sounds
were noted in a village 4 km SSW. The Alert Level remained at 2 (on a
5-level scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit of the volcano is truncated
by a large breached crater extending to the sea on the east flank that was
formed by edifice collapse. Suwanosejima, one of Japan's most frequently
active volcanoes, was in a state of intermittent strombolian activity from
Otake, the NE summit crater, that began in 1949 and lasted until 1996,
after which periods of inactivity lengthened. The largest historical
eruption took place in 1813-14, when thick scoria deposits blanketed
residential areas, and the SW crater produced two lava flows that reached
the western coast. At the end of the eruption the summit of Otake collapsed
forming a large debris avalanche and creating the horseshoe-shaped Sakuchi
caldera, which extends to the eastern coast. The island remained
uninhabited for about 70 years after the 1813-1814 eruption. Lava flows
reached the eastern coast of the island in 1884. Only about 50 people live
on the island.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Yasur  | Vanuatu  | 19.532°S, 169.447°E  | Summit elev. 361 m



Based on webcam images and information from the Vanuatu Meteorology and
Geo-Hazards Department (VMGD), the Wellington VAAC reported that during 2-3
April low-level ash plumes from Yasur rose to an altitude of 1.5 km (5,000
ft) a.s.l. and drifted N and SE. Ashfall was confirmed on the SSW parts of
the island.



Geologic Summary. Yasur, the best-known and most frequently visited of the
Vanuatu volcanoes, has been in more-or-less continuous Strombolian and
Vulcanian activity since Captain Cook observed ash eruptions in 1774. This
style of activity may have continued for the past 800 years. Located at the
SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a
nearly circular, 400-m-wide summit crater. The active cone is largely
contained within the small Yenkahe caldera, and is the youngest of a group
of Holocene volcanic centers constructed over the down-dropped NE flank of
the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the
Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with
eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along
the Yenkahe horst accompanying eruptions has raised Port Resolution harbor
more than 20 m during the past century.



Sources: Wellington Volcanic Ash Advisory Center (VAAC)
http://vaac.metservice.com/;

Vanuatu Meteorology and Geo-Hazards Department (VMGD)
http://www.geohazards.gov.vu/


2-2-2-2-2-2-2-2-2-2-2-2-2


==============================================================



Volcano Listserv is a collaborative venture among Arizona State University
(ASU), Portland State University (PSU), the Global Volcanism Program (GVP)
of the Smithsonian Institution's National Museum of Natural History, and
the International Association for Volcanology and Chemistry of the Earth's
Interior (IAVCEI).



ASU - http://www.asu.edu/

PSU - http://pdx.edu/

GVP - http://www.volcano.si.edu/

IAVCEI - https://www.iavceivolcano.org/



To unsubscribe from the volcano list, send the message:

signoff volcano

to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.



To contribute to the volcano list, send your message to:

volcano@xxxxxxx.  Please do not send attachments.



==============================================================

------------------------------

End of Volcano Digest - 6 Apr 2020 to 8 Apr 2020 (#2020-40)
***********************************************************


[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux