Smithsonian / USGS Weekly Volcanic Activity Report 7-13 August 2019

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



5-5-5-5-5-5-5-5-5-5-5-5-5-5


From: "Kuhn, Sally" <KUHNS@xxxxxx>


Smithsonian / USGS Weekly Volcanic Activity Report

7-13 August 2019



Sally Kuhn Sennert - Weekly Report Editor (kuhns@xxxxxx)

URL: https://volcano.si.edu/reports_weekly.cfm





New Activity/Unrest: Asamayama, Honshu (Japan)  | Sarychev Peak, Matua
Island (Russia)  | Shishaldin, Fox Islands (USA)  | Slamet, Central Java
(Indonesia)  | Tangkubanparahu, Western Java (Indonesia)  | Ulawun, New
Britain (Papua New Guinea)  | Veniaminof, United States



Ongoing Activity: Aira, Kyushu (Japan)  | Asosan, Kyushu (Japan)  | Dukono,
Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Ibu,
Halmahera (Indonesia)  | Karangetang, Siau Island (Indonesia)  | Karymsky,
Eastern Kamchatka (Russia)  | Klyuchevskoy, Central Kamchatka (Russia)  |
Merapi, Central Java (Indonesia)  | Nevados de Chillan, Chile  | Piton de
la Fournaise, Reunion Island (France)  | Popocatepetl, Mexico  | Sangeang
Api, Indonesia  | Semisopochnoi, United States  | Sheveluch, Central
Kamchatka (Russia)  | Stromboli, Aeolian Islands (Italy)  | Suwanosejima,
Ryukyu Islands (Japan)  | Villarrica, Chile





The Weekly Volcanic Activity Report is a cooperative project between the
Smithsonian's Global Volcanism Program and the US Geological Survey's
Volcano Hazards Program. Updated by 2300 UTC every Wednesday, these reports
are preliminary and subject to change as events are studied in more detail.
This is not a comprehensive list of all of Earth's volcanoes erupting
during the week, but rather a summary of activity at volcanoes that meet
criteria discussed in detail in the "Criteria and Disclaimers" section.
Carefully reviewed, detailed reports about recent activity are published in
issues of the Bulletin of the Global Volcanism Network.



Note that many news agencies do not archive the articles they post on the
Internet, and therefore the links to some sources may not be active. To
obtain information about the cited articles that are no longer available on
the Internet contact the source.







New Activity/Unrest





Asamayama  | Honshu (Japan)  | 36.406°N, 138.523°E  | Summit elev. 2568 m



JMA reported that at 2208 on 7 August a small phreatic eruption at
Asamayama produced an ash plume that rose higher than 1.8 km above the
crater rim and drifted N. Blocks were ejected 200 m from the crater. The
eruption lasted about 20 minutes and was the first since 19 June 2015. The
Alert Level was raised to 3 (on a scale of 1-5). Ash fell in Tsumagoi
Village and Naganohara Town, in the Gunma Prefecture. White plumes rose as
high as 700 m above the crater rim during 8-13 August, and the amount of
sulfur dioxide released was 90-200 tons per day.



Geologic Summary. Asamayama, Honshu's most active volcano, overlooks the
resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the
junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake
cone forms the summit and is situated east of the horseshoe-shaped remnant
of an older andesitic volcano, Kurofuyama, which was destroyed by a
late-Pleistocene landslide about 20,000 years before present (BP). Growth
of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows,
the largest of which occurred about 14,000-11,000 BP, and by growth of the
Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama
pyroclastic cone that forms the present summit, is probably only a few
thousand years old and has an historical record dating back at least to the
11th century CE. Maekake has had several major plinian eruptions, the last
two of which occurred in 1108 (Asamayama's largest Holocene eruption) and
1783 CE.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Sarychev Peak  | Matua Island (Russia)  | 48.092°N, 153.2°E  | Summit elev.
1496 m



SVERT reported that an ash plume from Sarychev Peak rose to 2.7 km (9,000
ft) a.s.l. and drifted 50 km SE on 11 August, based on Tokyo VAAC notices.
The Aviation Color Code was raised to Yellow.



Geologic Summary. Sarychev Peak, one of the most active volcanoes of the
Kuril Islands, occupies the NW end of Matua Island in the central Kuriles.
The andesitic central cone was constructed within a 3-3.5-km-wide caldera,
whose rim is exposed only on the SW side. A dramatic 250-m-wide, very
steep-walled crater with a jagged rim caps the volcano. The substantially
higher SE rim forms the 1496 m high point of the island. Fresh-looking lava
flows, prior to activity in 2009, had descended in all directions, often
forming capes along the coast. Much of the lower-angle outer flanks of the
volcano are overlain by pyroclastic-flow deposits. Eruptions have been
recorded since the 1760s and include both quiet lava effusion and violent
explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows
that reached the sea.



Source: Sakhalin Volcanic Eruption Response Team (SVERT) http://www.imgg.ru/





Shishaldin  | Fox Islands (USA)  | 54.756°N, 163.97°W  | Summit elev. 2857 m



AVO reported that during 7-13 August continuous, low-level tremor at
Shishaldin was recorded by the seismic network and elevated surface
temperatures were visible in satellite images. The Aviation Color Code
remained at Orange and the Volcano Alert Level remained at Watch.



Geologic Summary. The beautifully symmetrical volcano of Shishaldin is the
highest and one of the most active volcanoes of the Aleutian Islands. The
2857-m-high, glacier-covered volcano is the westernmost of three large
stratovolcanoes along an E-W line in the eastern half of Unimak Island. The
Aleuts named the volcano Sisquk, meaning "mountain which points the way
when I am lost." A steady steam plume rises from its small summit crater.
Constructed atop an older glacially dissected volcano, it is Holocene in
age and largely basaltic in composition. Remnants of an older ancestral
volcano are exposed on the west and NE sides at 1500-1800 m elevation.
There are over two dozen pyroclastic cones on its NW flank, which is
blanketed by massive aa lava flows. Frequent explosive activity, primarily
consisting of strombolian ash eruptions from the small summit crater, but
sometimes producing lava flows, has been recorded since the 18th century.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Slamet  | Central Java (Indonesia)  | 7.242°S, 109.208°E  | Summit elev.
3428 m



PVMBG reported that seismicity at Slamet significantly increased beginning
in June, with 51,511 signals indicating emissions and 22 tectonic
earthquakes recorded through 8 August. White plumes with variable density
rose as high as 300 m above the crater rim.Tremor began to be recorded at
the end of July with gradually increasing amplitude. In addition, notable
inflation was detected at the end of July and long-term temperatures of hot
springs showed an upward trend. The Alert Level was raised to 2 (on a scale
of 1-4) and the public was warned to stay outside a radius of 2 km.



Geologic Summary. Slamet, Java's second highest volcano at 3428 m and one
of its most active, has a cluster of about three dozen cinder cones on its
lower SE-NE flanks and a single cinder cone on the western flank. It is
composed of two overlapping edifices, an older basaltic-andesite to
andesitic volcano on the west and a younger basaltic to basaltic-andesite
one on the east. Gunung Malang II cinder cone on the upper E flank on the
younger edifice fed a lava flow that extends 6 km E. Four craters occur at
the summit of Gunung Slamet, with activity migrating to the SW over time.
Historical eruptions, recorded since the 18th century, have originated from
a 150-m-deep, 450-m-wide, steep-walled crater at the western part of the
summit and have consisted of explosive eruptions generally lasting a few
days to a few weeks.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Tangkubanparahu  | Western Java (Indonesia)  | 6.77°S, 107.6°E  | Summit
elev. 2084 m



PVMBG reported that during 5-11 August phreatic events at Tangkubanparahu's
Ratu Crater continued to produced sometimes dense, gray-to-white plumes
that rose as high as 200 m above the vent and ash plumes rose as high as
100 m. The emissions were accompanied by roaring. Ashfall was localized
around Ratu Crater. The seismic network recorded continuous tremor. The
Alert Level remained at 2 (on a scale of 1-4), and the public was warned to
stay 1.5 km away from the active crater.



Geologic Summary. Tangkubanparahu (also known as Tangkuban Perahu) is a
broad shield-like stratovolcano overlooking Indonesia's former capital city
of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene
Sunda caldera, which formed about 190,000 years ago. The volcano's low
profile is the subject of legends referring to the mountain of the
"upturned boat." The rim of Sunda caldera forms a prominent ridge on the
western side; elsewhere the caldera rim is largely buried by deposits of
Tangkubanparahu volcano. The dominantly small phreatic historical eruptions
recorded since the 19th century have originated from several nested craters
within an elliptical 1 x 1.5 km summit depression.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Ulawun  | New Britain (Papua New Guinea)  | 5.05°S, 151.33°E  | Summit
elev. 2334 m



RVO reported that during 7-8 August minor emissions of white vapor rose
from Ulawunâ??s summit crater. Seismicity was dominated by low-level volcanic
tremor and remained at low-to-moderate levels. RSAM values fluctuated
between 400 and 550 units; peaks did not go above 700.



Geologic Summary. The symmetrical basaltic-to-andesitic Ulawun
stratovolcano is the highest volcano of the Bismarck arc, and one of Papua
New Guinea's most frequently active. The volcano, also known as the Father,
rises above the N coast of the island of New Britain across a low saddle NE
of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A
prominent E-W escarpment on the south may be the result of large-scale
slumping. Satellitic cones occupy the NW and E flanks. A steep-walled
valley cuts the NW side, and a flank lava-flow complex lies to the south of
this valley. Historical eruptions date back to the beginning of the 18th
century. Twentieth-century eruptions were mildly explosive until 1967, but
after 1970 several larger eruptions produced lava flows and basaltic
pyroclastic flows, greatly modifying the summit crater.



Source: Rabaul Volcano Observatory (RVO)





Veniaminof  | United States  | 56.17°N, 159.38°W  | Summit elev. 2507 m



AVO reported that seismic unrest at Veniaminof continued during 7-13 August
with low-frequency earthquakes being common. Satellite and webcam views
showed nothing unusual. The Volcano Alert Level remained at Advisory and
the Aviation Color Code remained at Yellow.



Geologic Summary. Veniaminof, on the Alaska Peninsula, is truncated by a
steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700
years ago. The caldera rim is up to 520 m high on the north, is deeply
notched on the west by Cone Glacier, and is covered by an ice sheet on the
south. Post-caldera vents are located along a NW-SE zone bisecting the
caldera that extends 55 km from near the Bering Sea coast, across the
caldera, and down the Pacific flank. Historical eruptions probably all
originated from the westernmost and most prominent of two intra-caldera
cones, which rises about 300 m above the surrounding icefield. The other
cone is larger, and has a summit crater or caldera that may reach 2.5 km in
diameter, but is more subdued and barely rises above the glacier surface.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Ongoing Activity





Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m



JMA reported that during 5-13 August very small eruptive events were
detected at Minamidake crater (at Aira Calderaâ??s Sakurajima volcano),
though none of them were explosive. Crater incandescence was occasionally
visible in webcams at night. The Alert Level remained at 3 (on a 5-level
scale).



Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay
contains the post-caldera Sakurajima volcano, one of Japan's most active.
Eruption of the voluminous Ito pyroclastic flow accompanied formation of
the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera
was formed during the early Holocene in the NE corner of the Aira caldera,
along with several post-caldera cones. The construction of Sakurajima began
about 13,000 years ago on the southern rim of Aira caldera and built an
island that was finally joined to the Osumi Peninsula during the major
explosive and effusive eruption of 1914. Activity at the Kitadake summit
cone ended about 4850 years ago, after which eruptions took place at
Minamidake. Frequent historical eruptions, recorded since the 8th century,
have deposited ash on Kagoshima, one of Kyushu's largest cities, located
across Kagoshima Bay only 8 km from the summit. The largest historical
eruption took place during 1471-76.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Asosan  | Kyushu (Japan)  | 32.884°N, 131.104°E  | Summit elev. 1592 m



JMA reported that increased eruptive activity at Asosan that began on 28
July continued at least through 13 August. Ash plumes drifted N and NW, and
crater incandescence was visible at night. Sulfur dioxide gas emissions
were very high at 2,000-5,000 tons per day. The Alert Level remained at 2
(on a scale of 1-5).



Geologic Summary. The 24-km-wide Asosan caldera was formed during four
major explosive eruptions from 300,000 to 90,000 years ago. These produced
voluminous pyroclastic flows that covered much of Kyushu. The last of
these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and
pyroclastic-flow deposits. A group of 17 central cones was constructed in
the middle of the caldera, one of which, Nakadake, is one of Japan's most
active volcanoes. It was the location of Japan's first documented
historical eruption in 553 CE. The Nakadake complex has remained active
throughout the Holocene. Several other cones have been active during the
Holocene, including the Kometsuka scoria cone as recently as about 210 CE.
Historical eruptions have largely consisted of basaltic to
basaltic-andesite ash emission with periodic strombolian and
phreatomagmatic activity. The summit crater of Nakadake is accessible by
toll road and cable car, and is one of Kyushu's most popular tourist
destinations.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m



Based on satellite and wind model data, and statements from ground-based
observers, the Darwin VAAC reported that during 7-13 August ash plumes from
Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted
in multiple directions. Ashfall was reported on 8 August at the Galela
Airport, Maluku Utara, 17 km NW. The Alert Level remained at 2 (on a scale
of 1-4), and the public was warned to remain outside of the 2-km exclusion
zone.



Geologic Summary. Reports from this remote volcano in northernmost
Halmahera are rare, but Dukono has been one of Indonesia's most active
volcanoes. More-or-less continuous explosive eruptions, sometimes
accompanied by lava flows, occurred from 1933 until at least the mid-1990s,
when routine observations were curtailed. During a major eruption in 1550,
a lava flow filled in the strait between Halmahera and the north-flank cone
of Gunung Mamuya. This complex volcano presents a broad, low profile with
multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of
the summit crater complex, contains a 700 x 570 m crater that has also been
active during historical time.



Sources: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml;

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM)
http://vsi.esdm.go.id/





Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev.
1103 m



Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of
Ebeko, observed explosions on 2 and 4 August that sent ash plumes up to 3
km (10,000 ft) a.s.l. and drifted SE. A thermal anomaly was identified in
satellite images on those same two days. The Aviation Color Code remained
at Orange (the second highest level on a four-color scale).



Geologic Summary. The flat-topped summit of the central cone of Ebeko
volcano, one of the most active in the Kuril Islands, occupies the northern
end of Paramushir Island. Three summit craters located along a SSW-NNE line
form Ebeko volcano proper, at the northern end of a complex of five
volcanic cones. Blocky lava flows extend west from Ebeko and SE from the
neighboring Nezametnyi cone. The eastern part of the southern crater
contains strong solfataras and a large boiling spring. The central crater
is filled by a lake about 20 m deep whose shores are lined with steaming
solfataras; the northern crater lies across a narrow, low barrier from the
central crater and contains a small, cold crescentic lake. Historical
activity, recorded since the late-18th century, has been restricted to
small-to-moderate explosive eruptions from the summit craters. Intense
fumarolic activity occurs in the summit craters, on the outer flanks of the
cone, and in lateral explosion craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Ibu  | Halmahera (Indonesia)  | 1.488°N, 127.63°E  | Summit elev. 1325 m



PVMBG reported that during 7-12 August white-to-gray plumes rose 200-800 m
above Ibuâ??s crater rim. The Alert Level remained at 2 (on a scale of 1-4),
and the public was warned to stay at least 2 km away from the active
crater, and 3.5 km away on the N side.



Geologic Summary. The truncated summit of Gunung Ibu stratovolcano along
the NW coast of Halmahera Island has large nested summit craters. The inner
crater, 1 km wide and 400 m deep, contained several small crater lakes
through much of historical time. The outer crater, 1.2 km wide, is breached
on the north side, creating a steep-walled valley. A large parasitic cone
is located ENE of the summit. A smaller one to the WSW has fed a lava flow
down the W flank. A group of maars is located below the N and W flanks.
Only a few eruptions have been recorded in historical time, the first a
small explosive eruption from the summit crater in 1911. An eruption
producing a lava dome that eventually covered much of the floor of the
inner summit crater began in December 1998.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Karangetang  | Siau Island (Indonesia)  | 2.781°N, 125.407°E  | Summit
elev. 1797 m



PVMBG reported that during 5-11 August lava continued to effuse from
Karangetangâ??s Main Crater and travel down drainages on the W and SW flanks,
producing incandescent avalanches that descended those same drainages.
White plumes rose from the summit craters rose 50-100 m above the peak. The
Alert Level remained at 2 (on a scale of 1-4).



Geologic Summary. Karangetang (Api Siau) volcano lies at the northern end
of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi
island. The stratovolcano contains five summit craters along a N-S line. It
is one of Indonesia's most active volcanoes, with more than 40 eruptions
recorded since 1675 and many additional small eruptions that were not
documented in the historical record (Catalog of Active Volcanoes of the
World: Neumann van Padang, 1951). Twentieth-century eruptions have included
frequent explosive activity sometimes accompanied by pyroclastic flows and
lahars. Lava dome growth has occurred in the summit craters; collapse of
lava flow fronts have produced pyroclastic flows.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit
elev. 1513 m



KVERT reported that a thermal anomaly over Karymsky was visible in
satellite images during 2 and 4-6 August. Ash plumes drifted 180 km SE and
NW during 3-5 August. The Aviation Color Code remained at Orange (the
second highest level on a four-color scale).



Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern
volcanic zone, is a symmetrical stratovolcano constructed within a
5-km-wide caldera that formed during the early Holocene. The caldera cuts
the south side of the Pleistocene Dvor volcano and is located outside the
north margin of the large mid-Pleistocene Polovinka caldera, which contains
the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding
Karymsky eruptions originated beneath Akademia Nauk caldera, located
immediately south. The caldera enclosing Karymsky formed about 7600-7700
radiocarbon years ago; construction of the stratovolcano began about 2000
years later. The latest eruptive period began about 500 years ago,
following a 2300-year quiescence. Much of the cone is mantled by lava flows
less than 200 years old. Historical eruptions have been vulcanian or
vulcanian-strombolian with moderate explosive activity and occasional lava
flows from the summit crater.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit
elev. 4754 m



KVERT reported that a weak thermal anomaly over Klyuchevskoy was visible in
satellite images during 5-6 August. The Aviation Color Code remained at
Orange (the second highest level on a four-color scale).



Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's
highest and most active volcano. Since its origin about 6000 years ago, the
beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced
frequent moderate-volume explosive and effusive eruptions without major
periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen
volcano and lies SE of the broad Ushkovsky massif. More than 100 flank
eruptions have occurred during the past roughly 3000 years, with most
lateral craters and cones occurring along radial fissures between the
unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m
elevation. The morphology of the 700-m-wide summit crater has been
frequently modified by historical eruptions, which have been recorded since
the late-17th century. Historical eruptions have originated primarily from
the summit crater, but have also included numerous major explosive and
effusive eruptions from flank craters.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Merapi  | Central Java (Indonesia)  | 7.54°S, 110.446°E  | Summit elev.
2910 m



PVMBG reported that during 5-11 August the lava-dome volume at Merapi had
decreased compared to the week before and was an estimated 461,000 cubic
meters, based on analyses of drone images. Extruded lava fell into the
upper parts of the SE-flank, generating a total of two block-and-ash flows
that traveled as far as 1.2 km down the Gendol drainage on 4 and 6 August.
Diffuse white plumes rose as high as 50 m above the summit on some days.
The Alert Level remained at 2 (on a scale of 1-4), and residents were
warned to stay outside of the 3-km exclusion zone.



Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in
one of the world's most densely populated areas and dominates the landscape
immediately north of the major city of Yogyakarta. It is the youngest and
southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth
of Old Merapi during the Pleistocene ended with major edifice collapse
perhaps about 2000 years ago, leaving a large arcuate scarp cutting the
eroded older Batulawang volcano. Subsequently growth of the steep-sided
Young Merapi edifice, its upper part unvegetated due to frequent eruptive
activity, began SW of the earlier collapse scarp. Pyroclastic flows and
lahars accompanying growth and collapse of the steep-sided active summit
lava dome have devastated cultivated lands on the western-to-southern
flanks and caused many fatalities during historical time.



Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known
as CVGHM) http://vsi.esdm.go.id/





Nevados de Chillan  | Chile  | 36.868°S, 71.378°W  | Summit elev. 3180 m



ONEMI and SERNAGEOMIN reported that during 8-13 August multiple explosions
at Nevados de Chillánâ??s Nicanor Crater generated gas-and-ash plumes and
ejected incandescent material around the crater. These explosions were
recorded at 0438 on 8 August, at 2223 on 10 August, at 1831 and 1952 on 12
August, and at 0427, 1058, and 1116 on 13 August. Eruption plumes rose as
high as 765 m above the summit. The Alert Level remained at Orange, the
second highest level on a four-color scale, and residents were reminded not
to approach the crater within 3 km. ONEMI maintained an Alert Level Yellow
(the middle level on a three-color scale) for the communities of Pinto,
Coihueco, and San Fabián; on 13 August they stated that the public should
stay at least 3 km away from the crater on the SW flank and 5 km away on
the ENE flank.



Geologic Summary. The compound volcano of Nevados de Chillán is one of the
most active of the Central Andes. Three late-Pleistocene to Holocene
stratovolcanoes were constructed along a NNW-SSE line within three nested
Pleistocene calderas, which produced ignimbrite sheets extending more than
100 km into the Central Depression of Chile. The largest stratovolcano,
dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW
end of the group. Volcán Viejo (Volcán Chillán), which was the main active
vent during the 17th-19th centuries, occupies the SE end. The new Volcán
Nuevo lava-dome complex formed between 1906 and 1945 between the two
volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau
dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and
eventually exceeded its height.



Sources: Oficina Nacional de Emergencia-Ministerio del Interior (ONEMI)
http://www.onemi.cl/;

Servicio Nacional de Geología y Minería (SERNAGEOMIN)
http://www.sernageomin.cl/





Piton de la Fournaise  | Reunion Island (France)  | 21.244°S, 55.708°E  |
Summit elev. 2632 m



OVPF reported that a seismic crisis at Piton de la Fournaise began at 0700
on 11 August and was accompanied by rapid deformation. The locations of the
earthquakes and area of deformation indicated that magma rose from deep
under the SE edge of Dolomieu Crater to beneath the E and SE flanks. Tremor
began around 1620, indicating the likely start of this yearâ??s fourth
eruption, though inclement weather conditions prevented visual
confirmation. The Alert Level was raised to 2-2. On 12 August OVPF
confirmed that fissures had opened in the E part of lâ??Enclos Fouqué, SE of
the upper Grandes Pentes. Scientists saw two fissures, about 1.4 km apart,
at 1,700 and 1,500 m elevation during an overflight on 13 August. Only the
lowest elevation fissure was active. Three distinct cones along the fissure
fed lava flows that merged into one which traveled to 665 m elevation and
caused small fires as it burned local vegetation.



Geologic Summary. The massive Piton de la Fournaise basaltic shield volcano
on the French island of Réunion in the western Indian Ocean is one of the
world's most active volcanoes. Much of its more than 530,000-year history
overlapped with eruptions of the deeply dissected Piton des Neiges shield
volcano to the NW. Three calderas formed at about 250,000, 65,000, and less
than 5000 years ago by progressive eastward slumping of the volcano.
Numerous pyroclastic cones dot the floor of the calderas and their outer
flanks. Most historical eruptions have originated from the summit and
flanks of Dolomieu, a 400-m-high lava shield that has grown within the
youngest caldera, which is 8 km wide and breached to below sea level on the
eastern side. More than 150 eruptions, most of which have produced fluid
basaltic lava flows, have occurred since the 17th century. Only six
eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from
fissures on the outer flanks of the caldera. The Piton de la Fournaise
Volcano Observatory, one of several operated by the Institut de Physique du
Globe de Paris, monitors this very active volcano.



Source: Observatoire Volcanologique du Piton de la Fournaise (OVPF)
http://www.ipgp.fr/





Popocatepetl  | Mexico  | 19.023°N, 98.622°W  | Summit elev. 5393 m



CENAPRED reported that each day during 7-13 August there were 125-209
steam-and-gas emissions from Popocatépetl, some of which contained ash. As
many as seven explosions were recorded daily, with the exceptions of 7
August (no explosion were detected) and 11 August (16 were documented). Two
explosions on 13 August were characterized as major (at 0427 and 0453) and
ejected incandescent material onto the flanks. The Alert Level remained at
Yellow, Phase Two (middle level on a three-color scale).



Geologic Summary. Volcán Popocatépetl, whose name is the Aztec word for
smoking mountain, rises 70 km SE of Mexico City to form North America's
2nd-highest volcano. The glacier-clad stratovolcano contains a
steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is
modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier
volcano. At least three previous major cones were destroyed by
gravitational failure during the Pleistocene, producing massive
debris-avalanche deposits covering broad areas to the south. The modern
volcano was constructed south of the late-Pleistocene to Holocene El Fraile
cone. Three major Plinian eruptions, the most recent of which took place
about 800 CE, have occurred since the mid-Holocene, accompanied by
pyroclastic flows and voluminous lahars that swept basins below the
volcano. Frequent historical eruptions, first recorded in Aztec codices,
have occurred since Pre-Columbian time.



Source: Centro Nacional de Prevencion de Desastres (CENAPRED)
https://www.gob.mx/cenapred





Sangeang Api  | Indonesia  | 8.2°S, 119.07°E  | Summit elev. 1949 m



The Darwin VAAC reported that during 7-13 August ash plumes from Sangeang
Api were identified in satellite images rising to 2.4-3 km (8,000-10,000
ft) a.s.l. and drifting in multiple directions. The Alert Level remained at
2 (on a scale of 1-4).



Geologic Summary. Sangeang Api volcano, one of the most active in the
Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of
Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic
cones, 1949-m-high Doro Api and 1795-m-high Doro Mantoi, were constructed
in the center and on the eastern rim, respectively, of an older, largely
obscured caldera. Flank vents occur on the south side of Doro Mantoi and
near the northern coast. Intermittent historical eruptions have been
recorded since 1512, most of them during in the 20th century.



Source: Darwin Volcanic Ash Advisory Centre (VAAC)
http://www.bom.gov.au/aviation/volcanic-ash/darwin-va-advisory.shtml





Semisopochnoi  | United States  | 51.93°N, 179.58°E  | Summit elev. 1221 m



AVO reported that during 7-13 August seismicity at Semisopochnoi remained
elevated and was characterized by periods of continuous tremor and discrete
low-frequency earthquakes. No unusual activity was observed in satellite
images, though views were often cloudy. The Volcano Alert Level remained at
Watch and the Aviation Color Code remained at Orange.



Geologic Summary. Semisopochnoi, the largest subaerial volcano of the
western Aleutians, is 20 km wide at sea level and contains an 8-km-wide
caldera. It formed as a result of collapse of a low-angle, dominantly
basaltic volcano following the eruption of a large volume of dacitic
pumice. The high point of the island is 1221-m-high Anvil Peak, a
double-peaked late-Pleistocene cone that forms much of the island's
northern part. The three-peaked 774-m-high Mount Cerberus volcano was
constructed during the Holocene within the caldera. Each of the peaks
contains a summit crater; lava flows on the northern flank of Cerberus
appear younger than those on the southern side. Other post-caldera
volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the
caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake
in the NE part of the caldera. Most documented historical eruptions have
originated from Cerberus, although Coats (1950) considered that both
Sugarloaf and Lakeshore Cone within the caldera could have been active
during historical time.



Source: US Geological Survey Alaska Volcano Observatory (AVO)
https://avo.alaska.edu/





Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit
elev. 3283 m



KVERT reported that a thermal anomaly over Sheveluchâ??s lava dome was
identified daily in satellite images during 2-9 August. A diffuse ash plume
rose to 2.5 km (8,200 ft) a.s.l. and drifted 40 km NW on 5 August. The
Aviation Color Code remained at Orange (the second highest level on a
four-color scale).



Geologic Summary. The high, isolated massif of Sheveluch volcano (also
spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most
active volcanic structures. The summit of roughly 65,000-year-old Stary
Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera
breached to the south. Many lava domes dot its outer flanks. The Molodoy
Shiveluch lava dome complex was constructed during the Holocene within the
large horseshoe-shaped caldera; Holocene lava dome extrusion also took
place on the flanks of Stary Shiveluch. At least 60 large eruptions have
occurred during the Holocene, making it the most vigorous andesitic volcano
of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions
have provided valuable time markers for dating volcanic events in
Kamchatka. Frequent collapses of dome complexes, most recently in 1964,
have produced debris avalanches whose deposits cover much of the floor of
the breached caldera.



Source: Kamchatkan Volcanic Eruption Response Team (KVERT)
http://www.kscnet.ru/ivs/kvert/index_eng.php





Stromboli  | Aeolian Islands (Italy)  | 38.789°N, 15.213°E  | Summit elev.
924 m



INGV reported that Stromboliâ??s crater terrace activity was analyzed during
5-11 August through webcam views, and field inspections during 7-8 August.
At least nine vents in Area N (north crater area, NCA) were active on 7
August, three of which had well-formed spatter cones, with Strombolian
activity ejecting material 150 m high. A large scoria cone in Area C-S
(South Central crater area) jetted material 200 m high. Lava from Area C-S
vents continued to travel down the upper part of the Sciara del Fuoco,
reaching 500-600 m elevation.



Geologic Summary. Spectacular incandescent nighttime explosions at this
volcano have long attracted visitors to the "Lighthouse of the
Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its
name to the frequent mild explosive activity that has characterized its
eruptions throughout much of historical time. The small island is the
emergent summit of a volcano that grew in two main eruptive cycles, the
last of which formed the western portion of the island. The Neostromboli
eruptive period took place between about 13,000 and 5,000 years ago. The
active summit vents are located at the head of the Sciara del Fuoco, a
prominent horseshoe-shaped scarp formed about 5,000 years ago due to a
series of slope failures that extend to below sea level. The modern volcano
has been constructed within this scarp, which funnels pyroclastic ejecta
and lava flows to the NW. Essentially continuous mild Strombolian
explosions, sometimes accompanied by lava flows, have been recorded for
more than a millennium.



Source: Sezione di Catania - Osservatorio Etneo (INGV)
http://www.ct.ingv.it/





Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit
elev. 796 m



JMA reported that volcanic earthquakes began to be detected at Suwanosejima
on 4 August and volcanic tremors were occasionally recorded during 4-9
August. Four eruptive events occurred at Ontake Crater on 5 August and one
on 6 August. Large blocks were ejected as far as 400 m and ash plumes rose
as high as 1.5 km above the crater rim. The Alert Level remained at 2 (on a
5-level scale).



Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in
the northern Ryukyu Islands consists of an andesitic stratovolcano with two
historically active summit craters. The summit of the volcano is truncated
by a large breached crater extending to the sea on the east flank that was
formed by edifice collapse. Suwanosejima, one of Japan's most frequently
active volcanoes, was in a state of intermittent strombolian activity from
Otake, the NE summit crater, that began in 1949 and lasted until 1996,
after which periods of inactivity lengthened. The largest historical
eruption took place in 1813-14, when thick scoria deposits blanketed
residential areas, and the SW crater produced two lava flows that reached
the western coast. At the end of the eruption the summit of Otake collapsed
forming a large debris avalanche and creating the horseshoe-shaped Sakuchi
caldera, which extends to the eastern coast. The island remained
uninhabited for about 70 years after the 1813-1814 eruption. Lava flows
reached the eastern coast of the island in 1884. Only about 50 people live
on the island.



Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/





Villarrica  | Chile  | 39.42°S, 71.93°W  | Summit elev. 2847 m



POVI reported that a portion of the E edge of Villarricaâ??s summit crater
rim collapsed between 9 and 12 August.



Geologic Summary. Glacier-clad Villarrica, one of Chile's most active
volcanoes, rises above the lake and town of the same name. It is the
westernmost of three large stratovolcanoes that trend perpendicular to the
Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A
2-km-wide caldera that formed about 3500 years ago is located at the base
of the presently active, dominantly basaltic to basaltic-andesitic cone at
the NW margin of the Pleistocene caldera. More than 30 scoria cones and
fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that
have extended up to 20 km from the volcano were produced during the
Holocene. Lava flows up to 18 km long have issued from summit and flank
vents. Historical eruptions, documented since 1558, have consisted largely
of mild-to-moderate explosive activity with occasional lava effusion.
Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its
flanks.



Source: Proyecto Observación Villarrica Internet (POVI) http://www.povi.cl/


5-5-5-5-5-5-5-5-5-5-5-5-5-5

==============================================================

Volcano Listserv is a collaborative venture among Arizona State University (ASU), Portland State University (PSU), the Global Volcanism Program (GVP) of the Smithsonian Institution's National Museum of Natural History, and the International Association for Volcanology and Chemistry of the Earth's Interior (IAVCEI).

ASU - http://www.asu.edu/
PSU - http://pdx.edu/
GVP - http://www.volcano.si.edu/
IAVCEI - https://www.iavceivolcano.org/

To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxx.

To contribute to the volcano list, send your message to:
volcano@xxxxxxx.  Please do not send attachments.

==============================================================

------------------------------

End of Volcano Digest - 9 Aug 2019 to 14 Aug 2019 (#2019-67)
************************************************************



[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux