********************************************************** SI/USGS Weekly Volcanic Activity Report 15-21 April 2009 ********************************************************** Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Ebeko, Paramushir Island | Fernandina, Galápagos Islands, Ecuador | Kliuchevskoi, Central Kamchatka (Russia) | NW Rota-1, Mariana Islands | Pagan, Mariana Islands | Paluweh, Indonesia Ongoing Activity: | Batu Tara, Komba Island (Indonesia) | Chaitén, Southern Chile | Karymsky, Eastern Kamchatka | Kilauea, Hawaii (USA) | Koryaksky, Eastern Kamchatka | Nevado del Huila, Colombia | Rabaul, New Britain | Redoubt, Southwestern Alaska | Shiveluch, Central Kamchatka (Russia) | Suwanose-jima, Ryukyu Islands (Japan) | Tungurahua, Ecuador The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest EBEKO Paramushir Island 50.68°N, 156.02°E; summit elev. 1156 m KVERT reported that during 10-17 April observers from Severo-Kurilsk, about 7 km E of Ebeko, observed continued activity. Gas-and-steam plumes with some ash content rose to an altitude of 2.7 km (8,900 ft) a.s.l. and drifted 15 km SE. The Level of Concern Color Code remained at Yellow. Based on analysis of satellite imagery and information from Yelizovo Airport, the Tokyo VAAC reported that on 17 April an ash plume drifted NE at an altitude of 3 km (10,000 ft) a.s.l. Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. The eastern part of the southern crater of Ebeko contains strong solfataras and a large boiling spring. The central crater of Ebeko is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters of Ebeko, on the outer flanks of the cone, and in lateral explosion craters. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html FERNANDINA Galápagos Islands, Ecuador 0.37°S, 91.55°W; summit elev. 1,476 m Based on analysis of satellite imagery and information from IG, the Washington VVAC reported that during 15-16 April gas-and-steam plumes from Fernandina drifted up to 555 km W and a thermal anomaly was detected on the W half of the island. According to news articles, the eruption caused the deaths of numerous fish and multiple sea lions that were found floating in the sea. Geologic Summary. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as a lava flow that reached the coast from a SW-flank vent. Collapse of a nearly 1 cu km section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake. Sources: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html, Agence France-Presse http://www.google.com/hostednews/afp/article/ALeqM5gESLrlrxuZDDvCwlPdNTDjN9PHOA KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m KVERT reported that seismic activity from Kliuchevskoi was slightly above background levels on 11 April and at background levels the other days during 12-17 April. Satellite imagery revealed gas-and-ash plumes that drifted 90 km NE on 9 and 10 April, and a weak thermal anomaly over the volcano on 14 April. Fumarolic activity was seen on 15 and 16 April. The Level of Concern Color remained at Yellow. Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php NW ROTA-1 Mariana Islands 14.601°N, 144.775°E; summit elev. -517 m According to a news article from 20 April, scientists investigating NW Rota-1 during the previous two weeks observed the volcano erupting about 520 m below the ocean’s surface. Measurements indicated that the volcano had grown about 40 m since 2006. One scientist observed billowing yellow and white sulfur clouds, carbon dioxide bubbles streaming out of the vent, and "ash and pebble-sized rocks raining out of the plume." Geologic Summary. A submarine volcano detected during a 2003 NOAA bathymetric survey of the Mariana Island arc was found to be hydrothermally active and named NW Rota-1. The basaltic to basaltic-andesite seamount rises to within 517 m of the sea surface SW of Esmeralda Bank and lies 64 km NW of Rota Island and about 100 km north of Guam. When Northwest Rota-1 was revisited in 2004, a minor submarine eruption from a vent named Brimstone Pit on the upper south flank about 40 m below the summit intermittently ejected a plume several hundred meters high containing ash, rock particles, and molten sulfur droplets that adhered to the surface of the remotely operated submersible vehicle. The active vent was funnel-shaped, about 20 m wide and 12 m deep. NW Rota-1 is a large submarine volcano with prominent structural lineaments about a kilometer apart cutting across the summit of the edifice and down the NE and SW flanks. Source: GuamPDN http://www.guampdn.com/article/20090420/NEWS01/904200310&referrer=FRONTPAGECAROUSEL PAGAN Mariana Islands, central Pacific Ocean 18.13°N, 145.80°E; summit elev. 570 m Based on reports from the Washington VAAC, the USGS stated that on 15 April intermittent plumes of steam from Pagan rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted 37 km W. Observers on a ship reported that a white plume “with some black” rose 1.8 km (5,700 ft) from the volcano. On 16 April a diffuse plume drifted 85 km W. USGS raised the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory. The next day fishermen again reported a plume. Geologic Summary. Pagan Island, the largest and one of the most active of the Marianas Islands volcanoes, consists of two stratovolcanoes connected by a narrow isthmus. Both North and South Pagan stratovolcanoes were constructed within calderas, 7 and 4 km in diameter, respectively. The 570-m-high Mount Pagan at the NE end of the island rises above the flat floor of the caldera, which probably formed during the early Holocene. South Pagan is a 548-m-high stratovolcano with an elongated summit containing four distinct craters. Almost all of the historical eruptions of Pagan, which date back to the 17th century, have originated from North Pagan volcano. The largest eruption of Pagan during historical time took place in 1981 and prompted the evacuation of the sparsely populated island. Source: Emergency Management Office of the Commonwealth of the Mariana Islands, Office of the Governor, United States Geological Survey Volcano Hazards Program http://volcano.wr.usgs.gov/cnmistatus.php PALUWEH Lesser Sunda Islands, Indonesia 8.32°S, 121.71°E, summit elev. 875 m During 1-17 April, seismic activity from Paluweh increased, prompting CVGHM to raise the Alert Level to 1 (on a scale of 1-4) on 18 April. Geologic Summary. Paluweh volcano, also known as Rokatenda, forms the 8-km-wide island of Paluweh N of the volcanic arc that cuts across Flores Island. Although the volcano rises about 3,000 m above the sea floor, its summit reaches only 875 m above sea level. The broad irregular summit region contains overlapping craters up to 900 m wide and several lava domes. Several flank vents occur along a NW-trending fissure. The largest historical eruption of Paluweh occurred in 1928, when a strong explosive eruption was accompanied by landslide-induced tsunamis and lava-dome emplacement. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/ Ongoing Activity BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m Based on analysis of satellite imagery, the Darwin VAAC reported that during 15-16 April ash plumes from Batu Tara rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted 35-75 km W and NW. Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow. Source: Darwin Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m SERNAGEOMIN reported that during 12-16 April, seismicity from Chaitén's Domo Nuevo 1 and Domo Nuevo 2 lava-dome complex continued to increase. M 4-4.5 hybrid earthquakes occurred every 2-3 hours. Web camera views showed increased incandescence from the lava domes and gas-and-ash plumes that were wider at their base than previously seen. The plumes rose 1.5 km (4,900 ft) above the domes. The Alert Level remained at Red. Based on web camera views, analysis of satellite imagery, and a SIGMET notice, the Buenos Aires VAAC reported that during 16 and 18-19 April, ash plumes rose to altitudes of 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted SE and N. Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m-high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m. Sources: Servicio Nacional de Geología y Minería (SERNAGEOMIN) http://www.sernageomin.cl/, Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that seismic activity at Karymsky was not analyzed during 9-17 April due to technical reasons. Cloud cover prevented observations on the other days. The Level of Concern Color Code remained at Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m During 15-21 April, HVO reported that lava flowed SE from underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex through a lava tube system, reaching the Waikupanaha and Kupapa'u ocean entries. Occasional explosions occurred from the Waikupanaha ocean entry. Surface flows were present on the coastal plain and at the base of the pali. The vent in Halema'uma'u crater continued to produce a white plume occasionally tinged brown that drifted mainly SW. Incandescence was intermittently seen from the vent, and sounds resembling rushing gas or rockfalls were sometimes heard in the vicinity of the crater. Pele's hair, tiny glass spheres, and ash were frequently retrieved from collection bins placed near the plume. The sulfur dioxide emission rate at the summit was elevated, reaching 700 tonnes per day on 15 April; the 2003-2007 average rate was 140 tonnes per day. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ KORYAKSKY Eastern Kamchatka 53.320°N, 158.688°E; summit elev. 3456 m During 10-17 April, KVERT reported that seismic activity at Koryaksky was above background levels. Gas-and-ash plumes were seen on satellite imagery and drifted 30-680 km in multiple directions. The Level of Concern Color Code remained Orange. Based on information from the Yelizovo Airport and analysis of satellite imagery, the Tokyo VAAC reported that during 18 and 21 April ash plumes rose to altitudes of 3.7-4.6 km (12,000-15,000 ft) a.s.l. and drifted S, SW, W, and NE. Geologic Summary. The large symmetrical Koryaksky stratovolcano is the most prominent landmark of the NW-trending Avachinskaya volcano group, which towers above Kamchatka's largest city, Petropavlovsk. Erosion has produced a ribbed surface on the eastern flanks of the 3456-m-high volcano; the youngest lava flows are found on the upper western flank and below SE-flank cinder cones. No strong explosive eruptions have been documented during the Holocene. Extensive Holocene lava fields on the western flank were primarily fed by summit vents; those on the SW flank originated from flank vents. Lahars associated with a period of lava effusion from south- and SW-flank fissure vents about 3900-3500 years ago reached Avacha Bay. Only a few moderate explosive eruptions have occurred during historical time. Koryaksky's first historical eruption, in 1895, also produced a lava flow. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html NEVADO DEL HUILA Colombia 2.93°N, 76.03°W; summit elev. 5364 m During 15-21 April, INGEOMINAS reported that gas plumes from Nevado del Huila’s lava dome, viewed through the web camera, rose to a maximum altitude of 6.9 km (22,600 ft) a.s.l. and drifted W. On 19 April, intense degassing observed during an overflight produced whitish and bluish plumes. Thermal anomalies were detected on the N and S parts of the dome. The Alert Level was at Yellow. Geologic Summary. Nevado del Huila, the highest active volcano in Colombia, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. Two glacier-free lava domes lie at the southern end of the Huila volcanic complex. The first historical eruption from this little known volcano took place in the 16th century. Two persistent steam columns rise from the central peak, and hot springs are also present. Source: Instituto Colombiano de Geología y Minería (INGEOMINAS) http://www.ingeominas.gov.co/ RABAUL New Britain 4.271°S, 152.203°E; summit elev. 688 m RVO reported that during 10-17 April white and gray plumes from Rabaul caldera's Tavurvur cone rose 1-2 km above the crater. Plumes drifted SE and NW. Occasionally, incandescence from the summit crater was seen at night and roaring noises were reported. Ashfall was reported in Rabaul town (3-5 km NW) and surrounding areas. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Herman Patia, Rabaul Volcano Observatory (RVO) REDOUBT Southwestern Alaska 60.485°N, 152.742°W; summit elev. 3108 m AVO reported that during 15-21 April seismicity from Redoubt remained above background levels, indicating ongoing growth of the lava dome in the summit crater. The web camera showed that vigorous steam-and-gas plumes that may have occasionally contained small amounts of ash rose from the vent to altitudes below 4.6 km (15,000 ft) a.s.l. Analysis of satellite imagery revealed thermal anomalies at the summit and drifting sulfur dioxide plumes. Based on photos and thermal images obtained on 16 April, the lava dome was estimated to be about 500 x 700 m across and at least 50 m thick. The Volcanic Alert Level remained at Watch and the Aviation Color Code remained at Orange. Geologic Summary. Redoubt is a 3108-m-high glacier-covered stratovolcano with a breached summit crater in Lake Clark National Park about 170 km SW of Anchorage. Next to Mount Spurr, Redoubt has been the most active Holocene volcano in the upper Cook Inlet. Collapse of the summit of Redoubt 10,500-13,000 years ago produced a major debris avalanche that reached Cook Inlet. Holocene activity has included the emplacement of a large debris avalanche and clay-rich lahars that dammed Lake Crescent on the south side and reached Cook Inlet about 3500 years ago. Eruptions during the past few centuries have affected only the Drift River drainage on the north. Historical eruptions have originated from a vent at the north end of the 1.8-km-wide breached summit crater. The 1989-90 eruption of Redoubt had severe economic impact on the Cook Inlet region and affected air traffic far beyond the volcano. Source: Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/ SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was above background levels during 10-17 April. Based on interpretations of seismic data, ash plumes likely rose to altitudes of 4.5-7.5 km (14,800-24,600 ft) a.s.l. Analysis of satellite imagery revealed a daily thermal anomaly on the lava dome and ash plumes that drifted about 50 km NW on 13 April. According to observers, fumaroles were active on 15 and 16 April. The Level of Concern Color Code remained at Orange. Based on information from KEMSD, the Tokyo VAAC reported that eruptions on 19 and 22 April produced plumes that rose to altitudes of 4.6-5.2 km (15,000-17,000 ft) a.s.l. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m Based on information from JMA, the Tokyo VAAC reported an explosion from Suwanose-jima on 21 April. Details of possible resultant ash plumes were not reported. Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m During 15-21 April, IG reported that clouds mostly prevented observations of Tungurahua; a steam-and-gas plume rose 100 m above the crater on 15 April and an ash plume rose 1 km above the crater and drifted NW on 18 April. Ashfall was reported in areas to the SW and N during 15-16 and 18-19 April. Roaring noises were occasionally heard. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/ ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================