********************************************************** SI/USGS Weekly Volcanic Activity Report 4-10 February 2009 ********************************************************** Sally Kuhn Sennert - Weekly Report Editor kuhns@xxxxxx URL: http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Asama, Honshu | Redoubt, Southwestern Alaska | Sakura-jima, Kyushu Ongoing Activity: | Barren Island, Andaman Is | Chaitén, Southern Chile | Colima, México | Dukono, Halmahera | Fuego, Guatemala | Karymsky, Eastern Kamchatka | Kilauea, Hawaii (USA) | Popocatépetl, México | Rabaul, New Britain | Sangay, Ecuador | Santa María, Guatemala | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | Tungurahua, Ecuador The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. New Activity/Unrest ASAMA Honshu 36.403°N, 138.526°E; summit elev. 2568 m JMA reported that an eruption from Asama produced ash plumes that rose to altitudes of 3-4 km (10,000-13,100 ft) a.s.l. during 9-10 February. Ash fell in areas to the NE on 9 February. Geologic Summary. Asama, Honshu's most active volcano, is located at the junction of the Izu-Marianas and NE Japan arcs and has an historical record dating back at least to the 11th century. The modern cone of Maekake-yama is situated E of the horseshoe-shaped remnant of an older andesitic volcano, Kurofu-yama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic and rhyolitic lava cone was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 years BP, and by growth of the Ko-Asama-yama lava dome on the E flank. Maekake-yama is probably only a few thousand years old, but has had several major Plinian eruptions, the last two of which occurred in 1108 and 1783 AD. Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/indexe.html REDOUBT Southwestern Alaska 60.485°N, 152.742°W; summit elev. 3108 m AVO reported that during 4-10 February seismic activity at Redoubt fluctuated but remained elevated well above background levels. On 7 February, aerial observers reported continued steaming from an area around the 1989-90 lava dome and water discharge along the Drift Glacier. Clear web camera views during 7-9 February showed small steam plumes. Geologic Summary. Redoubt is a 3108-m-high glacier-covered stratovolcano with a breached summit crater in Lake Clark National Park about 170 km SW of Anchorage. Next to Mount Spurr, Redoubt has been the most active Holocene volcano in the upper Cook Inlet. Collapse of the summit of Redoubt 10,500-13,000 years ago produced a major debris avalanche that reached Cook Inlet. Holocene activity has included the emplacement of a large debris avalanche and clay-rich lahars that dammed Lake Crescent on the south side and reached Cook Inlet about 3500 years ago. Eruptions during the past few centuries have affected only the Drift River drainage on the north. Historical eruptions have originated from a vent at the north end of the 1.8-km-wide breached summit crater. The 1989-90 eruption of Redoubt had severe economic impact on the Cook Inlet region and affected air traffic far beyond the volcano. Source: Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/ SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m JMA reported that Sakura-jima erupted explosively eight times during 1-2 February; bombs were deposited as far away as 800 m from the Showa crater (on the E slope of Minami-dake, or "south mountain," at an elevation of about 800 m). JMA raised the Alert Level from 2 to 3 on 2 February. Based on information from JMA, the Tokyo VAAC reported that during 4-5 February explosions and eruptions produced plumes that rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted SE. On 9 February a pilot reported that an ash plume rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted SE. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/indexe.html, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html Ongoing Activity BARREN ISLAND Andaman Is 12.278°N, 93.858°E; summit elev. 354 m Based on analysis of satellite imagery, SIGMET notices, and pilot observations, the Darwin VAAC reported that on 5 February an ash plume from Barren Island rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted SSE. Geologic Summary. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of volcano that rises from a depth of about 2,250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the W, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. The morphology of a fresh pyroclastic cone that was constructed in the center of the caldera has varied during the course of historical eruptions. Lava flows fill much of the caldera floor and have reached the sea along the western coast during historical eruptions. Source: Darwin Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m Based on SIGMET notices, analysis of satellite imagery, reports from the Puerto Montt Flight Information Region (FIR), and web camera views, the Buenos Aires VAAC reported that on 4, 6, and 7 February ash plumes from Chaitén rose to altitudes 2-3 km (6,500-10,000 ft) a.s.l. and drifted N, NE, and SE. Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m-high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m. Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html COLIMA México 19.514°N, 103.62°W; summit elev. 3850 m During 3-10 February, white and gray plumes from Colima rose to altitudes of 3.9-4.9 km (12,800-16,100 ft) a.s.l. On 4 and 6 February, incandescent material was ejected 50 m above the summit. Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth. Source: Gobierno del Estado de Colima http://www.colima-estado.gob.mx/2006/seguridad/indvolcan.php DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m Based on analysis of satellite imagery, the Darwin VAAC reported that during 9-10 February ash plumes from Dukono rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted E and SE. Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m On 6, 8, and 10 February, INSIVUMEH reported that multiple explosions from Fuego produced ash plumes that rose to altitudes of 4.1-5.4 km (13,500-17,700 ft) a.s.l. and drifted S and SW. Ashfall was reported in areas downwind. Some explosions produced rumbling sounds and constant avalanches of blocks descended the flanks. On 8 February, explosions were accompanied by shock waves that were detected 10-15 km away. Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua. Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/ KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that seismic activity at Karymsky was above background levels during 1-4 February and at background levels on the other days during 30 January-6 February. Analysis of satellite imagery revealed a weak thermal anomaly in the crater on 30 January; clouds prohibited views during the rest of the reporting period. The Level of Concern Color Code remained at Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m HVO reported that during 4-10 February lava flowed SE from underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex through a lava tube system, reaching the Waikupanaha and Waha'ula ocean entries. On 7 and 8 February, multiple explosions at the ocean entry were seen. On 9 February, booming noises and explosions were noted at the ocean entry; observers reported lava bubble bursts at 15-30 minute intervals. Seismicity and later observations indicated that the bench had collapsed. Incandescence originated from the Prince lobe, the flow that feeds the Waha'ula ocean entry. Thermal anomalies suggesting surface flows were noted on the coastal plain and on the pali. The vent in Halema'uma'u crater continued to produce a predominantly white plume that drifted mainly SW; the plume turned brown on 5 and 7 February. Small amounts of tephra were routinely collected. Incandescence was intermittently seen from the vent, and sounds resembling rushing gas and rockfalls were sometimes heard in the vicinity of the crater. Geologists looked into the vent on 4 and 6 February and saw lava rising and falling about 115-120 m below the vent rim. The sulfur dioxide emission rate at the summit was 900 tonnes per day on 4 and 9 February, and 500 tonnes on 5 February; the 2003-2007 average rate was 140 tonnes per day. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/ POPOCATEPETL México 19.023°N, 98.622°W; summit elev. 5426 m CENAPRED reported that emissions of steam and gas from Popocatépetl were visible during 4-10 February; the plumes occasionally contained slight amounts of ash. On 6 February, an ash plume rose 800 m above the crater at 0839, and was followed by 75 minutes of increased seismicity. Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/ RABAUL New Britain 4.271°S, 152.203°E; summit elev. 688 m Based on analysis of satellite imagery, the Darwin VAAC reported that on 9 February an ash plume from Rabaul caldera's Tavurvur cone rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted SE. Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city. Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html SANGAY Ecuador 2.002°S, 78.341°W; summit elev. 5230 m Based on pilot observations, the Washington VAAC reported that on 9 February a plume from Sangay rose to an altitude of 7.9 km (26,000 ft) a.s.l. No ash was identified on satellite imagery, but meteoric clouds were also present in the area. Geologic Summary. The isolated Sangay volcano, located E of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. It has been in frequent eruption for the past several centuries. The steep-sided, 5,230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the E, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. Sangay towers above the tropical jungle on the E side; on the other sides flat plains of ash from the volcano have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of an historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The more or less constant eruptive activity has caused frequent changes to the morphology of the summit crater complex. Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m Based on analysis of satellite imagery, the Washington VAAC reported that on 4 February multiple ash puffs from Santa María's Santiaguito lava dome complex drifted W. On 6 February, INSIVUMEH reported that fumarolic plumes rose 80 m above the crater and rifted S and SW. Explosions produced plumes that rose to altitudes of 2.8-3.1 km (9,200-10,200 ft) a.s.l. and also drifted SW. Ashfall was reported in areas downwind. Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that seismic activity at Shiveluch was above background levels during 30 January-6 February. Based on interpretations of seismic data, ash plumes likely rose to altitudes of 5.3 km (17,400 ft) a.s.l. Lava flows continued to be active on the S and N flanks. Weak gas-and-steam activity was noted on 30 January and 1 February. Analysis of satellite imagery revealed a large thermal anomaly on the lava dome during 30 January-2 February, and on 5 February. The Level of Concern Color Code remained at Orange. Based on information from KEMSD, the Tokyo VAAC reported that an eruption on 7 February produced a plume that rose to an altitude of 4.9 km (16,000 ft) a.s.l. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Sources: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php, Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that during 30 January-6 February activity from the Soufrière Hills lava dome increased slightly, although seismic activity was low. Three rockfalls were detected. On 5 February, one small pyroclastic flow that originated in a gully on the N side of the lava dome traveled less than 1 km and stopped in Tyre's Ghaut (NW). The Hazard Level remained at 4. Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory (MVO) http://www.mvo.ms/ TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m The IG reported that during 4-8 February visual observations of Tungurahua were limited due to cloud cover; steam-and-ash plumes rose 0.5-1 km above the summit during 7 and 9-10 February. Plumes drifted W and NW. Cannon shots, roaring noises, and sounds resembling blocks rolling down the flanks were seldom reported. Based on pilot observations, the Washington VAAC reported that an ash plume rose to an altitude of 8.5 km (28,000 ft) a.s.l. and drifted SSE. On 4 and 8 February IG reported that ash fell in areas to the SW. Incandescence from the crater was seen at night on 6 February. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Sources: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/, Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html +++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805 Fax: 202.357.2476 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================