GVP/USGS Weekly Volcanic Activity Report 14-20 February 2007

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



*******************************************************
GVP/USGS Weekly Volcanic Activity Report

14-20 February 2007

http://www.volcano.si.edu/reports/usgs/

*******************************************************

New Activity/Unrest: | Kliuchevskoi, Russia | Nevado del Huila, Columbia | Piton de la Fournaise, Reunion Island | Telica, Nicaragua | White Island, New Zealand

Ongoing Activity: | Karangetang, Indonesia | Karymsky, Russia | Kilauea, USA | Manam, Papua New Guinea | Popocatépetl, México | Rabaul, Papua New Guinea | Sakura-jima, Japan | Santa María, Guatemala | Shiveluch, Russia | Soufrière Hills, Montserrat | St. Helens, USA | Suwanose-jima, Japan | Ubinas, Perú

New Activity/Unrest

KLIUCHEVSKOI Kamchatka Peninsula, Russia 56.06°N, 160.64°E; summit elev. 4,835 m

Increased summit activity at Kliuchevskoi on 15 February led KVERT to raise the Concern Color Code from Yellow to Orange <http://www.avo.alaska.edu/avo4/updates/color_code.html>. Ash explosions and incandescence at the summit were observed. Strombolian explosions expelled bombs about 300 m above the crater. Based on video data and observations, gas-and-steam plumes with small amounts of ash rose to altitudes of 5.3 km (17,400 ft) a.s.l. and drifted SW. A thermal anomaly at the summit was seen on satellite imagery.

Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions have occurred during the past 3,000 years, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive eruptions from flank craters.

Source: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml

Kliuchevskoi Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-26=

NEVADO DEL HUILA Columbia 2.93°N, 76.03°W; summit elev. 5,365 m

INGEOMINAS reported increased seismic activity and two explosions from Nevado del Huila on 19 February. An ash plume rose to an altitude of approximately 6 km (19,700 ft) a.s.l. During aerial observations on 20 February, ash deposits were seen on the W sector of a summit glacier and dispersed to the NW. Fumarolic plumes originating from several points along a fissure rose to 7 km (23,000 ft) a.s.l. Small mudflows from a glacier traveled down a gorge. Based on news reports, small avalanches prompted officials to order evacuations from towns bordering rivers.

Geologic Summary. Nevado del Huila, the highest active volcano in Colombia, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. Two glacier-free lava domes lie at the southern end of the Huila volcanic complex. The first historical eruption from this little known volcano took place in the 16th century. Two persistent steam columns rise from the central peak, and hot springs are also present.

Sources: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/,

Reuters http://www.nzherald.co.nz/section/2/story.cfm?c_id=2&objectid=10424841

Nevado del Huila Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1501-05=

PITON DE LA FOURNAISE Réunion Island, Indian Ocean 21.23°S, 55.71°E; summit elev. 2,631 m; All times are local (= UTC + 4 hours)

OVPDLF reported that on 18 February a small "seismic crisis" at Piton de la Fournaise began at 1611 and lasted only a few minutes. About 20 minutes later, based on seismic interpretation, an eruption at the summit began and ended the next day at 0155. A crack across Dolomieu crater was seen during an aerial observation on 18 February.

Geologic Summary. The massive Piton de la Fournaise shield volcano on the island of Réunion is one of the world's most active volcanoes. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest of three large calderas. This latter caldera is 8 km wide and is breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows within the caldera, have been documented since the 17th century.

Source: Observatoire Volcanologique du Piton de la Fournaise (OVPDLF) http://ovpf.univ-reunion.fr/

Piton de la Fournaise Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0303-02=

TELICA Nicaragua 12.602°N, 86.845°W; summit elev. 1061 m

The Washington VAAC reported that continuous emissions of ash from Telica were visible on a web-camera on 15 February. A resultant plume rose to an altitude of 1.5 km (5,000 ft) a.s.l. Based on satellite imagery, the plume drifted SW and a hotspot was present at the summit.

Geologic Summary. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. The Telica volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the Telica group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of 1061-m-high Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately SE of Telica, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

Telica Information from the Global Volcanism Program

http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=1404-04=

WHITE ISLAND Bay of Plenty, New Zealand 37.52°S, 177.78°E; summit elev. 321 m

Recent visits to White Island’s Crater Lake, including one on 13 February, have confirmed a continual rise in lake temperature since August 2006 from a normal range of 48-50ºC. In January 2007, the temperature reached over 60ºC. The last temperature measurement was 74ºC, the highest ever recorded in the lake. The increased heat flow caused accelerated evaporation, and the lake level has dropped over 6 m. Steam plumes have been observed over the island. A deformation survey of the crater floor showed no significant changes from recent months.

Geologic Summary. The uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The 321-m-high island consists of two overlapping stratovolcanoes; the summit crater appears to be breached to the SE because the shoreline corresponds to the level of several notches in the SE crater wall. Throughout the short historical period beginning in 1826 the volcano has had long periods of continuous hydrothermal activity and steam release, punctuated by small-to-medium eruptions. Its activity also forms a prominent part of Maori legends. The most recent eruptive episode, which began on 7 March 2000, included the largest eruption at White Island in the past 20 years on 27 July.

Source: GeoNet Data Centre http://data.geonet.org.nz/geonews/sab/2007/02/alert-bulletin-white-island-volcano-15.html

White Island Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0401-04=

Ongoing Activity

KARANGETANG [Api Siau] Siau Island, Indonesia 2.47°N, 125.29°E; summit elev. 1,784 m

On 14 February, the Alert Level at Karangetang was lowered to 2 (scale of 1-4). Seismicity had decreased in intensity and frequency since 18 November 2006. Lava flows and incandescent avalanches were not observed after 25 January 2007.

Geologic Summary. Karangetang (also known as Api Siau) lies at the northern end of the island of Siau, N of Sulawesi. The 1,784-m-high stratovolcano contains five summit craters along a N-S line. One of Indonesia's most active volcanoes, Karangetang has had more than 40 recorded eruptions since 1675. Twentieth-century eruptions have included frequent explosions, sometimes accompanied by pyroclastic flows and lahars.

Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://portal.vsi.esdm.go.id/joomla/

Karangetang Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0607-02=

KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m

Seismic activity at Karymsky was above background levels during 9-16 February, with 50-200 shallow earthquakes occurring daily. Minor explosions may have occurred and a thermal anomaly in the crater was detected on satellite imagery. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Source: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml

Karymsky Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13=

KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m

During 14-20 February, lava from Kilauea continued to flow from lava deltas into the ocean at the East Lae'apuki, Kamokuna, and East Ka'ili'ili entries. Incandescence was intermittently visible from several breakouts on the pali and from several vents in Pu'u 'O'o's crater. On 15 February, breakout surface lava from the Campout flow produced seven lava falls over the seacliff behind the East Lae'apuki bench. Lava continued to flow over the seacliff in this area for the rest of the reporting period. Tremor at Kilauea’s summit continued at low levels.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world’s most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu`u `O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving broad areas on the S flank of Kilauea and adding new land beyond the former coastline.

Source: US Geological Survey Hawaiian Volcano Observatory http://volcano.wr.usgs.gov/hvostatus.php

Kilauea information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01-

MANAM offshore New Guinea, Papua New Guinea 4.10°S, 145.06°E; summit elev. 1,807 m

Based on satellite imagery and information from Rabaul Volcano Observatory, the Darwin VAAC reported that diffuse plumes from Manam drifted WSW on 15 February.

Geologic Summary. The 10-km-wide island of Manam is one of Papua New Guinea's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1,807-m-high stratovolcano to its lower flanks. These "avalanche valleys," regularly spaced 90 degrees apart, channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five satellitic centers are located near the island's shoreline. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during the past century into the SE avalanche valley. Frequent historical eruptions have been recorded since 1616.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html

Manam Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0501-02=

POPOCATÉPETL México 19.02°N, 98.62°W; summit elev. 5,426 m

According to the Washington VAAC, a puff with little ash content emitted from Popocatépetl was reported from the MWO and visible from the camera operated by CENEPRED on 14 February. A very diffuse plume was seen drifting to the E on satellite imagery. Base on an aerial photograph taken on 24 January, CENEPRED reported that the lava-dome dimensions have slightly increased since 24 November 2006.

Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages.

Sources: Centro Nacional de Prevencion de Desastres (CENEPRED) http://www.cenapred.unam.mx/cgi-bin/popo/reportes/ultrep.cgi,

Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

Popocatépetl Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1401-09=

RABAUL New Britain Island, Papua New Guinea 4.271°S, 152.203°E; summit elev. 688 m

Based on satellite imagery and RVO, the Darwin VAAC reported that diffuse plumes from Rabaul rose to altitudes of 2.1 km (7,000 ft) a.s.l. and drifted ESE.

Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Source: Darwin Volcanic Ash Advisory Centre (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AU/messages.html

Rabaul Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-14=

SAKURA-JIMA Kyushu, Japan 31.58°N, 130.67°E; summit elev. 1,117 m

Based on satellite imagery and pilot reports, the Tokyo VAAC reported that an ash plume from Sakura-jima reached an altitude of 1.5 km (5,000 ft) a.s.l. on 15 February.

Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Sakura-jima Information from the Global Volcanism Program

http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=0802-08=

SANTA MARÍA Guatemala 14.756°N, 91.552°W; summit elev. 3,772 m

Based on satellite imagery, the Washington VAAC reported that diffuse plumes from Santa María's Santiaguito lava dome complex drifted NE on 15 February. INSIVUMEH reported that avalanches descended the SW flank to the base of Caliente Dome and explosions produced diffuse ash plumes that drifted SW on 15 February. Explosions on 19 February produced ash plumes and ashfall to areas SW. According to the Washington VAAC diffuse plumes were visible on satellite imagery.

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/geofisica/boletin%20formato.htm,

Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

Santa María Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03=

SHIVELUCH Kamchatka Peninsula, Russia 56.653°N, 161.360°E; summit elev. 3,283 m

Activity at Shiveluch continued above background levels during 9-16 February, with over 180 volcanic earthquakes and tremor occurring daily. Based on seismic interpretation, observation, and video data, gas-and-ash plumes rose to altitudes of 5.5-6 km (18,000-19,700 ft) a.s.l. throughout the reporting period. Plumes drifted W and SW. A large thermal anomaly was visible on satellite imagery. The Tokyo VAAC reported eruption plumes to altitudes of 5.2-6.1 km (17,000-20,000 ft) a.s.l. on 15 and 19 February based on information from KEMSD, KVERT, and satellite imagery. Plumes drifted NW on 19 February. The Level of Concern Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large horseshoe-shaped caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

Sources: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml,

Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Shiveluch Information from the Global Volcanism Program

http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=1000-27=

SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m

During 9-16 February, seismic activity at Soufrière Hills was slightly elevated as compared to previous weeks. The lava-dome volume was estimated at 200 million cubic meters based on recent measurements from LIDAR data. Previous measurements over-estimated the lava-dome volume due to the perceived location of the dome and the lack of data from inside the crater. The height of the dome was about 1060 m a.s.l. During 17-18 February, rockfalls and small pyroclastic flows traveled W down Gages Valley and E down Tar River Valley. Incandescence was seen from the E and N sides of the dome. Rockfalls continued on 19 and 20 February.

Based on satellite data and information from the MVO, the Washington VAAC reported continuous emissions during 14-20 February. Resultant plumes rose to altitudes of km (5,000-8,000 ft) a.s.l. and drifted mainly NW, W, and S. A thermal anomaly in the crater was detected on satellite imagery.

Geologic Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Sources: Montserrat Volcano Observatory http://www.mvo.ms/,

Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html

Soufrière Hills Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05=

ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m

Data from deformation-monitoring instruments showed that during 14-20 February the lava dome at Mount St. Helens continued to grow. Seismicity continued at low levels, punctuated by M 1.5-2.5 and occasionally larger earthquakes. Inclement weather inhibited observations.

Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers.

Source: US Geological Survey Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html

St. Helens Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05-

SUWANOSE-JIMA Ryukyu Islands, Japan 29.53°N, 129.72°E; summit elev. 799 m

Based on information from JMA and satellite imagery, the Tokyo VAAC reported that an explosion from Suwanose-jima produced eruption plumes during 19-20 February. The altitude and direction of the plumes were not reported.

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. Suwanose-jima, one of Japan’s most frequently active volcanoes, was in a state of intermittent strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for around 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884.

Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html

Suwanose-jima Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=0802-03=

UBINAS Perú 16.355°S, 70.903°W; summit elev. 5,672 m

Based on pilot reports, the Buenos Aires VAAC reported continuous emissions from Ubinas during 18-20 February. Ash plumes rose to 5.5-7 km (18,000-23,000 ft) a.s.l. and drifted E and SW.

Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.

Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html

Ubinas Information from the Global Volcanism Program

http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-02

*++++++++++++++++++++++++++++++++++
Sally Kuhn Sennert*

*SI/USGS Weekly Volcanic Activity Report Editor*

*Global Volcanism Program*

Smithsonian Institution

National Museum of Natural History MRC-119

Department of Mineral Sciences

Washington, D.C., 20560

http://www.volcano.si.edu/reports/usgs/index.cfm

Phone: 202.633.1805

Fax: 202.357.2476


<http://www.volcano.si.edu/reports/usgs/>++++++++++++++++++++++++++++++++++++++++++

==============================================================
To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx

To contribute to the volcano list, send your message to:
volcano@xxxxxxxx  Please do not send attachments.
==============================================================

[Index of Archives]     [Yosemite Backpacking]     [Earthquake Notices]     [USGS News]     [Yosemite Campgrounds]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux