*******************************************************
GVP/USGS Weekly Volcanic Activity Report
31 January-6 February 2007
http://www.volcano.si.edu/reports/usgs/
*******************************************************
Ongoing Activity: | Karymsky, Russia | Kilauea, USA | Rabaul, Papua New
Guinea | Sangay, Ecuador | Santa María, Guatemala | Shiveluch, Russia |
Soufrière Hills, Montserrat | St. Helens, USA | Suwanose-jima, Japan |
Ubinas, Perú
Ongoing Activity
KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m
Seismic activity at Karymsky was above background levels during 26
January-2 February, with 250-300 shallow earthquakes occurring daily.
Ash plumes may have reached altitudes of 3.0 km (9,900 ft) a.s.l. during
the reporting period. The Level of Concern Color Code remained at Orange
<http://www.avo.alaska.edu/color_codes.php>.
Geologic Summary. Karymsky, the most active volcano of Kamchatka's
eastern volcanic zone, is a symmetrical stratovolcano constructed within
a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago.
Construction of the Karymsky stratovolcano began about 2,000 years
later. The latest eruptive period began about 500 years ago, following a
2,300-year quiescence. Much of the cone is mantled by lava flows less
than 200 years old. Historical eruptions have been Vulcanian or
Vulcanian-Strombolian with moderate explosive activity and occasional
lava flows from the summit crater. Most seismicity preceding Karymsky
eruptions has originated beneath Akademia Nauk caldera, which is located
immediately S of Karymsky volcano and erupted simultaneously with
Karymsky in 1996.
Source: Kamchatkan Volcanic Eruption Response Team
http://www.kscnet.ru/ivs/kvert/updates.shtml
Karymsky Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13=
KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m
During 31 January-6 February, lava from Kilauea continued to flow from
lava deltas into the ocean at the East Lae'apuki, Kamokuna, and East
Ka'ili'ili entries. Incandescence was intermittently visible on the pali
and from several vents in Pu'u 'O'o's crater. Tremor near Pu’u ‘O’o
continued at low levels.
Geologic Summary. Kilauea, one of five coalescing volcanoes that
comprise the island of Hawaii, is one of the world’s most active
volcanoes. Eruptions at Kilauea originate primarily from the summit
caldera or along one of the lengthy E and SW rift zones that extend from
the caldera to the sea. About 90% of the surface of Kilauea is formed by
lava flows less than about 1,100 years old; 70% of the volcano's surface
is younger than 600 years. The latest Kilauea eruption began in January
1983 along the E rift zone. This long-term ongoing eruption from Pu`u
`O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from
the vents to the sea, paving broad areas on the S flank of Kilauea and
adding new land beyond the former coastline.
Source: US Geological Survey Hawaiian Volcano Observatory
http://volcano.wr.usgs.gov/hvostatus.php
Kilauea information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01-
RABAUL New Britain Island, Papua New Guinea 4.271°S, 152.203°E; summit
elev. 688 m
RVO reported that on 31 January, a large explosion from Rabaul caldera's
Tavurvur cone produced a shockwave. The flanks were showered with lava
fragments and an ash plume rose a few hundred meters above the summit
and drifted SE and E. Two more explosions occurred later that day.
During 31 January-6 February, emissions of steam and of variable amounts
of ash produced plumes that rose to a maximum altitude of 2.2 km (7,200
ft) a.s.l. and drifted NE, SE, and E. Roaring noises were audible on 4
February.
Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle
Peninsula at the NE end of New Britain forms a broad sheltered harbor.
The outer flanks of the 688-m-high asymmetrical pyroclastic shield
volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km
caldera is widely breached on the E, where its floor is flooded by
Blanche Bay. Two major Holocene caldera-forming eruptions at Rabaul took
place as recently as 3,500 and 1,400 years ago. Three small
stratovolcanoes lie outside the northern and NE caldera rims.
Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on
the caldera floor near the NE and western caldera walls. Several of
these, including Vulcan cone, which was formed during a large eruption
in 1878, have produced major explosive activity during historical time.
A powerful explosive eruption in 1994 occurred simultaneously from
Vulcan and Tavurvur volcanoes and forced the temporary abandonment of
Rabaul city.
Source: Herman Patia and Steve Saunders, Rabaul Volcano Observatory
Rabaul Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=0502-14=
SANGAY Ecuador 2.03°S, 78.34°W; summit elev. 5,188 m
Based on information from the Guayaquil MWO and satellite imagery, the
Washington VAAC reported that an eruption from Sangay on 6 February
produced ash plumes that rose to a maximum altitude of 9.1 km (30,000
ft) a.s.l. and drifted SW.
Geologic Summary. The isolated Sangay volcano, located E of the Andean
crest, is the southernmost of Ecuador's volcanoes, and its most active.
It has been in frequent eruption for the past several centuries. The
steep-sided, 5,230-m-high glacier-covered volcano grew within
horseshoe-shaped calderas of two previous edifices, which were destroyed
by collapse to the E, producing large debris avalanches that reached the
Amazonian lowlands. The modern edifice dates back to at least 14,000
years ago. Sangay towers above the tropical jungle on the E side; on the
other sides flat plains of ash from the volcano have been sculpted by
heavy rains into steep-walled canyons up to 600 m deep. The earliest
report of an historical eruption was in 1628. More or less continuous
eruptions were reported from 1728 until 1916, and again from 1934 to the
present. The more or less constant eruptive activity has caused frequent
changes to the morphology of the summit crater complex.
Source: Washington Volcanic Ash Advisory Center
http://www.ssd.noaa.gov/VAAC/messages.html
Sangay Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-09=
SANTA MARÍA Guatemala 14.756°N, 91.552°W; summit elev. 3,772 m
INSIVUMEH reported that explosions from Santa María’s Santiaguito lava
dome complex on 31 January and 5 February produced ash plumes that rose
to altitudes of 4.8 km (15,700 ft) a.s.l. On 5 February, plumes drifted
SW and S causing ashfall downwind. Block-and-ash avalanches descended
the SW and S flanks of Caliente Dome. Fumarolic plumes drifted SW. Based
on satellite imagery, the Washington VAAC reported that ash plumes
drifted SW on 31 January and W on 2 February.
Geologic Summary. Symmetrical, forest-covered Santa María volcano is one
of a chain of large stratovolcanoes that rises dramatically above the
Pacific coastal plain of Guatemala. The stratovolcano has a
sharp-topped, conical profile that is cut on the SW flank by a large,
1-km-wide crater, which formed during a catastrophic eruption in 1902
and extends from just below the summit to the lower flank. The renowned
Plinian eruption of 1902 followed a long repose period and devastated
much of SW Guatemala. The large dacitic Santiaguito lava-dome complex
has been growing at the base of the 1902 crater since 1922. Compound
dome growth at Santiaguito has occurred episodically from four
westward-younging vents, accompanied by almost continuous minor
explosions and periodic lava extrusion, larger explosions, pyroclastic
flows, and lahars.
Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e
Hidrologia (INSIVUMEH)
http://www.insivumeh.gob.gt/geofisica/boletin%20formato.htm,
Washington Volcanic Ash Advisory Center
http://www.ssd.noaa.gov/VAAC/messages.html
Santa María Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03=
SHIVELUCH Kamchatka Peninsula, Russia 56.653°N, 161.360°E; summit elev.
3,283 m
Activity at Shiveluch continued above background levels during 26
January-2 February, with over 140 shallow earthquakes occurring daily.
Based on seismic interpretation, observation, and video data,
gas-and-ash plumes rose 3.5-4.5 km (11,500-14,800 ft) a.s.l. throughout
the reporting period. Plumes drifted ESE. A large thermal anomaly was
visible on satellite imagery. The Tokyo VAAC reported ash plumes that
rose to an altitude of 4.3 km (14,000 ft) a.s.l. on 1 February were
visible on satellite imagery drifting E. An eruption occurred on 6
February that was not visible on satellite imagery. The Level of Concern
Color Code remained at Orange <http://www.avo.alaska.edu/color_codes.php>.
Geologic Summary. The high, isolated massif of Shiveluch volcano (also
spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya
volcano group and forms one of Kamchatka's largest and most active
volcanoes. The currently active Molodoy Shiveluch lava-dome complex was
constructed during the Holocene within a large horseshoe-shaped caldera
formed by collapse of the massive late-Pleistocene Strary Shiveluch
volcano. At least 60 large eruptions of Shiveluch have occurred during
the Holocene, making it the most vigorous andesitic volcano of the
Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most
recently in 1964, have produced large debris avalanches whose deposits
cover much of the floor of the breached caldera. During the 1990s,
intermittent explosive eruptions took place from a new lava dome that
began growing in 1980. The largest historical eruptions from Shiveluch
occurred in 1854 and 1964.
Sources: Kamchatkan Volcanic Eruption Response Team
http://www.kscnet.ru/ivs/kvert/updates.shtml,
Tokyo Volcanic Ash Advisory Center
http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html
Shiveluch Information from the Global Volcanism Program
http://www.volcano.si.edu/gvp/world/volcano.cfm?vnum=1000-27=
SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev.
1,052 m
Based on satellite imagery, the MVO, and pilot reports, the Washington
VAAC reported that a diffuse plume from Soufrière Hills rose to an
altitude of 1.5 km (5,000 ft) a.s.l. and drifted WNW on 31 January.
Measurable activity was low and visual observations were limited due to
cloud cover. On 6 January, a photograph taken from a helicopter showed
that the dome had continued to grow towards the W side of the crater.
Geologic Summary. The complex, dominantly andesitic Soufrière Hills
volcano occupies the southern half of the island of Montserrat. The
summit area consists primarily of a series of lava domes emplaced along
an ESE-trending zone. English's Crater, a 1-km-wide crater breached
widely to the east, was formed during an eruption about 4000 years ago
in which the summit collapsed, producing a large submarine debris
avalanche. Block-and-ash flow and surge deposits associated with dome
growth predominate in flank deposits at Soufrière Hills. Non-eruptive
seismic swarms occurred at 30-year intervals in the 20th century, but
with the exception of a 17th-century eruption that produced the Castle
Peak lava dome, no historical eruptions were recorded on Montserrat
until 1995. Long-term small-to-moderate ash eruptions beginning in that
year were later accompanied by lava-dome growth and pyroclastic flows
that forced evacuation of the southern half of the island and ultimately
destroyed the capital city of Plymouth, causing major social and
economic disruption.
Sources: Montserrat Volcano Observatory http://www.mvo.ms/, Washington
Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html
Soufrière Hills Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05=
ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m
Data from deformation-monitoring instruments showed that during 24-30
January, a spine on the lava dome at Mount St. Helens continued to grow.
Seismicity continued at low levels, punctuated by M 1.5-2.5 and
occasionally larger earthquakes.
Geologic Summary. Prior to 1980, Mount St. Helens formed a conical,
youthful volcano sometimes known as the Fuji-san of America. During the
1980 eruption the upper 400 m of the summit was removed by slope
failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially
filled by a lava dome. Mount St. Helens was formed during nine eruptive
periods beginning about 40-50,000 years ago, and has been the most
active volcano in the Cascade Range during the Holocene. The modern
edifice was constructed during the last 2,200 years, when the volcano
produced basaltic as well as andesitic and dacitic products from summit
and flank vents. Historical eruptions in the 19th century originated
from the Goat Rocks area on the N flank, and were witnessed by early
settlers.
Source: US Geological Survey Cascades Volcano Observatory
http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html
St. Helens Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05-
SUWANOSE-JIMA Ryukyu Islands, Japan 29.53°N, 129.72°E; summit elev. 799 m
Based on information from JMA and satellite imagery, the Tokyo VAAC
reported that an explosion from Suwanose-jima produced an eruption plume
during 5-6 February. The altitude and direction of the plume were not
reported.
Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima
in the northern Ryukyu Islands consists of an andesitic stratovolcano
with two historically active summit craters. Only about 50 persons live
on the sparsely populated island. The summit of the volcano is truncated
by a large breached crater extending to the sea on the E flank that was
formed by edifice collapse. Suwanose-jima, one of Japan’s most
frequently active volcanoes, was in a state of intermittent strombolian
activity from On-take, the NE summit crater, that began in 1949 and
lasted nearly a half century. The largest historical eruption took place
in 1813-14, when thick scoria deposits blanketed residential areas,
after which the island was uninhabited for around 70 years. The SW
crater produced lava flows that reached the western coast in 1813, and
lava flows reached the eastern coast of the island in 1884.
Source: Tokyo Volcanic Ash Advisory Center
http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html
Suwanose-jima Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=0802-03=
UBINAS Perú 16.355°S, 70.903°W; summit elev. 5,672 m
Based on pilot reports, the Buenos Aires VAAC reported continuous
emissions from Ubinas on 2 and 5 February. Ash plumes rose to 5.5 km
(18,000 ft) a.s.l. and drifted SW and S, respectively.
Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of
Ubinas, Peru's most active volcano, gives it a truncated appearance.
Ubinas is the northernmost of three young volcanoes located along a
regional structural lineament about 50 km behind the main volcanic front
of Peru. The upper slopes of the stratovolcano, composed primarily of
Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The
steep-walled, 150-m-deep summit caldera contains an ash cone with a
500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche
deposits from the collapse of the SE flank of Ubinas extend 10 km from
the volcano. Widespread plinian pumice-fall deposits from Ubinas include
some of Holocene age. Holocene lava flows are visible on the volcano's
flanks, but historical activity, documented since the 16th century, has
consisted of intermittent minor explosive eruptions.
Source: Buenos Aires Volcanic Ash Advisory Center
http://www.ssd.noaa.gov/VAAC/OTH/AG/messages.html
Ubinas Information from the Global Volcanism Program
http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-02
**+++++++++++++++++++++++++++++++++++++**
**Sally Kuhn Sennert**
**SI/USGS Weekly Volcanic Activity Report Editor**
**Global Volcanism Program**
Smithsonian Institution
National Museum of Natural History MRC-119
Department of Mineral Sciences
Washington, D.C., 20560
http://www.volcano.si.edu/reports/usgs/index.cfm
Phone: 202.633.1805
Fax: 202.357.2476
+++++++++++++++++++++++++++++++++++++++++
==============================================================
To unsubscribe from the volcano list, send the message:
signoff volcano
to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx
To contribute to the volcano list, send your message to:
volcano@xxxxxxxx Please do not send attachments.
==============================================================