New Mineral Science Shows Promise for Reducing Environmental Impacts from Mining plus 1 more

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Title: USGS Newsroom

New Mineral Science Shows Promise for Reducing Environmental Impacts from Mining plus 1 more

Link to USGS Newsroom

New Mineral Science Shows Promise for Reducing Environmental Impacts from Mining

Posted: 12 May 2015 07:00 AM PDT

Summary: Mining companies, land managers, and regulators now have a wealth of tools to aid in reducing potential mining impacts even before the mine gets started

Contact Information:

Bob Seal ( Phone: 703-648-6290 ); Alex Demas ( Phone: 703-648-4421 );




Mining companies, land managers, and regulators now have a wealth of tools to aid in reducing potential mining impacts even before the mine gets started. USGS and various research partners released a special edition of papers specifically targeted at providing modern environmental effect research for modern mining techniques.

Minerals play an important role in the global economy, and, as rising standards of living have increased demand for those minerals, the number and size of mines have increased, leading to larger potential impacts from mining.

“Approaches to protecting the environment from mining impacts have undergone a revolution over the past several decades,” said USGS mineral and environmental expert Bob Seal. “The sustainability of that revolution relies on an evolving scientific understanding of how mines and their waste products interact with the environment.”

Many research conclusions are contained in the special issue, and some of the primary findings are listed here:

Pre-Mining Tools

  • USGS evaluated several tools for predicting pre-mining baseline conditions at a mine, even if no baseline was established. This will make it easier to remediate the mine after it closes.
  • USGS also took tools used to screen mine waste for contaminants and tested them  for predicting potential sources for contaminants before the mine even got started.

Mitigating while Mining

  • Because slag is the byproduct of mineral processing, its physical and chemical properties depend a lot on what the original mined mineral material was.
  • Slag from copper, zinc, or nickel may be less attractive for reuse, since it has a higher potential to negatively impact the environment than slag that came from iron or steel production.
  • Gold mining runs a lower risk of contaminating the environment with cyanide if mines give enough time for it to safely evaporate and be broken down by sunlight.

Mine Drainage

  • Mine drainage is incredibly complicated. It doesn’t come from a single source, but rather complex interactions between water, air, and micro-organisms like bacteria.
  • Mine drainage is not just acid mine drainage—it can be basic, neutral, or even high in salts. All of these drainage types have their own impacts.
  • Mine drainage concentrations in streams can actually change based on the time of day.

Toxic Transport

  • USGS tested many of the existing techniques for figuring out what toxic contaminants wind up in stream sediments so managers know the right one for the right job.
  • USGS also evaluated a new technique for predicting how toxic certain metals will be in aquatic environments.

The research papers are contained in a special issue of the journal Applied Geochemistry. This research was conducted by scientists from USGS and several collaborating organizations, including the Geological Survey of Canada, InTerraLogic, Montana Bureau of Mines and Geology, Montana Tech, SUNY Oneonta, the University of Maryland, the University of Montana, and the University of Waterloo.

USGS minerals research can help to identify problems before they become problems, or at the very least, help address the impacts that do exist. Learn more about USGS minerals research here, or follow us on www.twitter.com/usgsminerals

Boom and Bust in the Boreal Forest: Climate Signals Seen in Bird Populations

Posted: 11 May 2015 12:00 PM PDT

Summary: Weaving concepts of ecology and climatology, recent interdisciplinary research by USGS and several university partners reveals how large-scale climate variability appears to connect boom-and-bust cycles in the seed production of the boreal (northern conifer) forests of Canada to massive, irregular movements of boreal birds

Contact Information:

Jon Campbell ( Phone: 703-648-4180 ); Julio Betancourt ( Phone: 520-820-0943 );




A pine siskin stands on the branch of a northern conifer tree. Photo, USFWS National Digital Library.
A pine siskin stands on the branch of a northern conifer tree. Photo, USFWS National Digital Library. (High resolution image)

Weaving concepts of ecology and climatology, recent interdisciplinary research by USGS and several university partners reveals how large-scale climate variability appears to connect boom-and-bust cycles in the seed production of the boreal (northern conifer) forests of Canada to massive, irregular movements of boreal birds.

These boreal bird “irruptions” — extended migrations of immense numbers of birds to areas far outside their normal range — have been recorded for decades by birders, but the ultimate causes of the irruptions have never been fully explained. 

“This study is a textbook example of interdisciplinary research, establishing an exciting new link between climate and bird migrations” said USGS acting Director Suzette Kimball. “A vital strength of our organization is our ability to pursue scientific issues across the boundaries of traditional academic disciplines.”

The investigation was based on statistical analysis of two million observations of the pine siskin (a finch, Spinus pinus) recorded since 1989 by Project FeederWatch, a citizen science program managed by the Cornell Lab of Ornithology. By methodically counting the birds they see at their feeders from November through early April, FeederWatchers help scientists track continent-wide movements of winter bird populations.

One of several nomadic birds that breed during summer in Canadian boreal forests, pine siskins feed on seed crops of conifers and other tree species. When seed is abundant locally, pine siskins also spend the autumn and winter there. In other years, they may irrupt, migrating unpredictably hundreds or even thousands of kilometers to the south and east in search of seed and favorable habitat. “Superflights” is the term applied to winters (e.g.1997-1998, 2012-2013) when boreal species have blanketed bird feeders across the U.S. 

The irruptions of pine siskins and other boreal species follow a lagging pattern of  intermittent, but broadly synchronous, accelerated seed production (“masting”) by trees in the boreal forest. Widespread masting in pines, spruces, and firs is driven primarily by favorable climate during the two or three consecutive years required to initiate and mature seed crops. Leading up to masting events, the green developing cones and the promise of abundant seed stimulate higher reproductive rates in birds.

However, seed production is expensive for trees and tends to be much reduced in the years following masting. Consequently, meager seed crops in the years following masting drive boreal birds to search elsewhere for food and overwintering habitat.

The key finding of the new research is that the two principal pine siskin irruption modes – North to South and West to East – correlate closely with spatial patterns of climate variability across North America that are well understood by climatologists. Not surprisingly, severely cold winters tend to drive birds south during the irruption year.

More subtly, the researchers found that favorable and unfavorable climatic conditions of regularly juxtaposed regions called “climate dipoles” two years prior to the irruption also appear to push and pull bird migrations across the continent.

USGS co-author Julio Betancourt commented, “Our study underscores the value of continent-wide biological monitoring. In this case, avid birders across the U.S. and Canada have contributed sustained observations of birds at the same broad geographic scale in which weather and climate have also been observed and understood.”

Other similar examples of biological monitoring within USGS include the Breeding Bird Survey and the National Phenology Network.

The research study, authored by Court Strong (University of Utah), Ben Zuckerberg (University of Wisconsin-Madison), Julio Betancourt (USGS-Reston), and Walt Koenig (Cornell University), was published May 11 online in the Proceedings of the National Academy of Sciences. 


[Index of Archives]     [Volcano]     [Earthquakes]     [Rocks & Minerals]     [Hiking Boots]     [Photography]     [Yosemite Hiking]     [Yosemite Campgrounds]     [California Hot Springs]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux