Plenty of Potash, but Some Regions Lack Low Cost Sources for Crop Production plus 1 more

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Title: USGS Newsroom

Plenty of Potash, but Some Regions Lack Low Cost Sources for Crop Production plus 1 more

Link to USGS Newsroom

Plenty of Potash, but Some Regions Lack Low Cost Sources for Crop Production

Posted: 03 Mar 2015 04:14 AM PST

Summary: While the earth contains enough potash to meet the increased global demand for crop production  and U.S. supplies are likely secure, some regions lack potash deposits needed for optimal food crop yields

Contact Information:

Diane Noserale ( Phone: 703-648-4333 ); Greta Orris ( Phone: 520-670-5583 );




While the earth contains enough potash to meet the increased global demand for crop production  and U.S. supplies are likely secure, some regions lack potash deposits needed for optimal food crop yields. According to a recent USGS global assessment of potash resources, the costs of importing potash long distances can limit its use and imports are subject to supply disruptions.

“Global scarcity is not the issue with potash – transportation costs are,” said USGS scientist Greta Orris, who led the assessment. “We chose to assess potash because it is used primarily for fertilizer and with the increasing global population, the need for agricultural lands to be increasingly productive will continue,” said Orris. 

The U.S. imports more than 80 percent of the potash it uses, mostly from the Elk Point Basin in Saskatchewan, Canada. The Elk Basin is the world’s largest source of potash, having provided at least 20 percent of the world’s potash supply for nearly 40 years. 

The U.S. produces potash from deposits in Utah and New Mexico. While production from the Michigan basin recently ceased, a large potash resource exists there.  Production and development of resources in Michigan have been hindered by low potash prices, dated production equipment, and poor transport infrastructure amongst other factors. A significant potash resource in Arizona has also been identified, but resources in other states tend to be relatively small.

This global assessment, which includes a summary report and accompanying database, is the most complete, up-to-date, GIS-based, global compilation of information on known and potential potash resources from evaporite sources. The database includes more than 900 known potash deposits with measured resources. It also outlines 84 tracts throughout the world where undiscovered future resources might be found. 

“A significant finding of this assessment is that there appears to be little to no potential to develop potash mines in either China or India, where large populations create the need for highly productive agricultural land, which in turn requires large amounts of appropriate fertilizers,” said Orris. “High import costs have resulted in lower usage of potash fertilizers than commonly seen in the U.S., and the potential for the land to be less productive.”

Potash includes a variety of minerals, ores, or processed products that contain potassium, one of three primary plant nutrients essential for growing food crops and biofuels. Modern agriculture requires large quantities of potassium so crop production is adequate to feed a growing population as arable land acreage becomes more limited. While potassium can be derived from other sources, conventional potash deposits – those formed by evaporation -- are the only cost- effective source for large quantities of potassium needed for high-yield agriculture.

The known deposits include location, geology, resource, production and other descriptive information. Potash-bearing basins may host tens of millions to more than 100 billion metric tons of potassium. Examples include Elk Point Basin in Canada, the Pripyat Basin in Belarus, the Solikamsk Basin in western Russia, and the Zechstein Basin in Germany.

The biggest potash producers are Canada, Russia, Belarus, and Israel. In addition to China and India, other areas lacking conventional deposits include much of Africa, Australia, and South America.

For the 84 tracts, the quantities of undiscovered resources are not estimated in this report. Instead, the tracts are classified into six categories that rank their potential to provide potash resources in 25 to 50 years based on known resources in the tract, level of available information, and whether geologic or other deficiencies, such as lack of water, power, or other infrastructure, could prevent or delay development of deposits. Potash tracts that may have potash deposits in production within the next five years include those in Ethiopia and the Republic of Congo.

More information on global and domestic potash, including demand, production, and uses is available from the USGS.

Wildlife Researchers to Give Public Close-Up, Real-Time View of Big Game Fieldwork

Posted: 02 Mar 2015 09:00 AM PST

Summary: Seeking insights to help moose, elk, mule deer and bighorn sheep populations, researchers from the University of Wyoming, the Wyoming Game and Fish Department, the U.S. Geological Survey and other partners will spend much of March capturing animals on their winter ranges in western and southern Wyoming

Contact Information:

Chad Baldwin, UWYO ( Phone: 307-766-2929 ); Matthew  Kauffman, USGS ( Phone: 307-766-6404 );




LARAMIE, WY — Seeking insights to help moose, elk, mule deer and bighorn sheep populations, researchers from the University of Wyoming, the Wyoming Game and Fish Department, the U.S. Geological Survey and other partners will spend much of March capturing animals on their winter ranges in western and southern Wyoming.

Members of the public will have an opportunity to closely follow the work.

As scientists did during deer captures earlier this winter, researchers with the UW-headquartered Wyoming Migration Initiative (WMI) and personnel from Game and Fish plan to live-tweet the approximately three weeks of research activity and provide Facebook posts about the animal captures multiple times a day.

The tweets will be by WMI Director Matt Kauffman, a UW professor and U.S. Geological Survey scientist. Game and Fish biologists and wardens collaborating on these studies also will tweet from @wgfd. All updates will use the hashtags #wyodeer, #wyomoose, #wyoelk and #wyosheep. Included in the tweets will be maps and data graphics from the forthcoming “Atlas of Wildlife Migration,” a partnership effort with the University of Oregon InfoGraphics Lab cartographers. The USGS, tweeting from @usgs and @USGSCoopUnits, will help promote the discussion to a broader national audience.

WMI’s Facebook page is at www.facebook.com\migrationinitiative. Game and Fish is at www.facebook.com/WyoGFD. The photos, videos, updates and Twitter feed will be posted to a dedicated WMI webpage, www.migrationinitiative.org/capturelivetweetmarch2015.

“Capture and GPS-collar efforts are the primary tools researchers use to study these iconic animals and their movements,” Kauffman says. “Wyomingites care deeply about these herds and the habitats they occupy, so it’s a great opportunity for us to give them, and people beyond Wyoming, a closer view of how and why we are doing this research.”

“Many of these studies have been ongoing for several years in remote and hard-to-access areas of Wyoming. They are used to make important decisions about wildlife management,” says Game and Fish Communications Director Renny MacKay. “Social media allow us to give the public a new look at this valuable research.”

The eight studies that are part of this month’s field work are: 

  • Elk migrations into and out of Yellowstone National Park have been of interest for decades, and new GPS radio collar technology has advanced the mapping of these routes. The Wiggins Fork herd is the last gap in a detailed ecosystem-wide map of Yellowstone’s elk migrations. To fill that gap, researchers will capture and collar elk north of Dubois starting the week of March 2.
  • Nutrition and behavioral response of moose to beetle-killed forest in the Snowy Mountains. The mountain pine beetle epidemic has transformed forested habitats in this range, with uncertain consequences for one of Wyoming's newest moose herds. Moose will be captured and collared March 5-9 between Centennial and Saratoga to assess nutrition and population growth, and to compare current moose movements to those from a pre-beetle kill study conducted in 2004-05.
  • Researchers will capture deer March 10 near Pinedale to evaluate how habitat conditions and human disturbance affect fat levels of deer wintering on and near one of the largest natural gas fields in Wyoming.
  • The nutritional dynamics of the famous Wyoming Range mule deer herd. The March 11 deer capture near Big Piney will continue to look at how many deer this range can support. The next step will be to track fawns to measure survival and cause of mortality.
  • It is unknown how drought affects mule deer as they migrate -- and forage -- from low-elevation winter ranges to mountain summer ranges. This March 12-13 capture between Kemmerer, Cokeville and Evanston will help shed light on whether warming influences summer forage quality, and ultimately the survival and reproduction of migrants.
  • The March 14-15 capture near Rock Springs aims to help advance the understanding of the benefits of migration and guide management and conservation of a spectacular 150-mile deer migration from the Red Desert north of Rock Springs to summer ranges in northwest Wyoming.
  • This March 18 capture of elk between Baggs and Saratoga in the Sierra Madre Mountains is part of an assessment of elk movements before, during and after massive tree fall caused by mountain pine beetles.
  • The interaction of nutrition and disease in bighorn sheep. Pneumonia in bighorn sheep continues to affect their population dynamics, yet it is unknown how ecological conditions affect susceptibility to disease. The March 19-21 capture of bighorns from three herds near Jackson, Dubois and Cody will investigate how nutrition interacts with disease to affect bighorn populations.

Kauffman says the WMI research team -- which also includes UW’s big game nutrition expert, Kevin Monteith; Western EcoSystems Inc. researcher Hall Sawyer; and Yale University biologist Arthur Middleton -- will provide information on the objectives of each study, and what has been learned from ongoing research, through photos, short video interviews, maps and graphics. They’ll also tweet links to existing papers, reports, news articles, interviews, YouTube videos and other information relevant to each study.

Funding for these projects is made possible through extensive collaborations among state and federal managers, sportsmen’s groups, nongovernmental organizations and private foundations. Additional partner details will be shared through Twitter and Facebook as the work progresses.

The public -- and other groups interested in the research -- are encouraged to add comments via Twitter or Facebook throughout the roughly three-week research effort.

 


[Index of Archives]     [Volcano]     [Earthquakes]     [Rocks & Minerals]     [Hiking Boots]     [Photography]     [Yosemite Hiking]     [Yosemite Campgrounds]     [California Hot Springs]     [Steve's Art]     [Hot Springs Forum]

  Powered by Linux