Earthquake Plot Thickens in Pacific Northwest plus 1 more |
Earthquake Plot Thickens in Pacific Northwest Posted: 30 Jul 2014 12:00 PM PDT
Summary: Nearly forgotten research from decades ago complicates the task of quantifying earthquake hazards in the Pacific Northwest, according to a new report from scientists at the U.S. Geological Survey, the University of Washington, and other universities
Contact Information: Leslie Gordon, USGS ( Phone: 650-329-4006 ); Hannah Hickey, UW ( Phone: 206-543-2580 ); SEATTLE, Wash. — Nearly forgotten research from decades ago complicates the task of quantifying earthquake hazards in the Pacific Northwest, according to a new report from scientists at the U.S. Geological Survey, the University of Washington, and other universities. The report focuses on the Cascadia subduction zone—a giant active fault that slants eastward beneath the Pacific coast of southern British Columbia, Washington, Oregon, and northern California. Geologic studies in the past three decades have provided increasingly specific estimates of Cascadia earthquake sizes and repeat times. The estimates affect public safety through seismic provisions in building design and tsunami limits on evacuation maps. The new report does not question whether the Cascadia subduction zone repeatedly produces enormous earthquakes. What the report asks instead is how much geologists can say, with confidence, about the history of those earthquake going back thousands of years. How big was each of the earthquakes? Did they occur twice as often along one part of the subduction zone as another? The report concludes that extracting such details from deep-sea sediments is more complicated than was previously thought. The report reappraises sediment cores that were collected near the foot of the continental slope offshore Washington. A subset of cores from this area underpins influential estimates of Cascadia earthquake size and recurrence that were published in 2012. The new report points to confounding evidence from a much larger suite of cores that were collected and first analyzed by University of Washington and Oregon State University scientists in the late 1960s and early 1970s. Those Nixon-era cores were the work of researchers unconcerned with earthquakes. Plate tectonics was then such a new idea that scientists were just beginning to recognize the Cascadia subduction zone as a tectonic plate boundary. The sediment cores were collected to learn about turbidites—beds of sand and mud laid down by bottom-hugging, sediment-driven currents that infrequently emerged from submarine canyons onto the deep ocean floor. Not until a 1990 report would turbidites be reinterpreted as clues to Cascadia earthquake history. “Rethinking turbidite paleoseismology along the Cascadia subduction zone” is freely available online in Geology, a leading Earth-science journal. The authors are Brian Atwater (U.S. Geological Survey), Bobb Carson (Lehigh University), Gary Griggs (University of California Santa Cruz), and Paul Johnson and Marie Salmi (University of Washington). |
Nesting Gulf Sea Turtles Feed in Waters Filled With Threats Posted: 30 Jul 2014 11:29 AM PDT
Summary: Nesting loggerhead sea turtles in the northern Gulf of Mexico feed among areas that were oiled by the 2010 Deepwater Horizon spill and where human activities occur, several of which are known to pose threats to sea turtles, a new U.S Geological study showed
Contact Information: Kristen Hart ( Phone: 954-650-0336 ); Christian Quintero ( Phone: 813-498-5019 ); DAVIE, Fla.— Nesting loggerhead sea turtles in the northern Gulf of Mexico feed among areas that were oiled by the 2010 Deepwater Horizon spill and where human activities occur, several of which are known to pose threats to sea turtles, a new U.S Geological study showed. The feeding areas for 10 turtles overlapped with an area that experienced surface oiling during the 2010 Deepwater Horizon oil spill. These sites, and others, also overlapped with areas trawled by commercial fishing operations and used for oil and gas extraction. The study, which is the largest to date on Northern Gulf loggerheads, examined 59 nesting females, which scientists believe could be 15 percent of the breeding females in the Northern Gulf of Mexico—a small and declining subpopulation of loggerheads that is federally classified as threatened. “With such a large sample of the nesting females, we’re finally getting the big picture of when, where and how females that nest in the northern Gulf of Mexico rely on off-shore waters to survive. This information is critical for halting and reversing their declines,” said USGS research ecologist Kristen Hart, the lead author of the study. The study began in the wake of the Deepwater Horizon oil spill as a means to better understand how sea turtles used habitat in the Northern Gulf of Mexico by analyzing the movements of turtles tagged between 2010 and 2013. All of the turtles tracked in the study remained in the Gulf of Mexico to feed, and a third remained in the northern part of the Gulf. This differs from reports in other parts of the world, where some loggerheads have been shown to migrate across ocean basins after nesting. “These results show how important the Gulf of Mexico is to this group of loggerheads – they stay here throughout the year, not just during the nesting season,” said USGS research biologist Meg Lamont, a co-author on the study. The study also revealed specific parts of the Gulf where females feed and spend most of their time. It is believed that an individual turtle will return to these specific feeding areas throughout her life, a trait scientists call “foraging site fidelity.” “With this study, we essentially discovered their homes – the waters where these loggerheads spend most of the year,” Lamont said. “People think of nesting beaches as their homes, but they don’t really spend much time there. They only migrate to the nesting beaches to lay eggs. The rest of their adult life is spent foraging at sea.” The next step for USGS scientists Hart and Lamont is to track these nesting Gulf loggerheads long enough to test whether they do indeed re-visit the same feeding areas throughout their life, as they suspect. This would help pinpoint important feeding sites of long-term and high traffic use – in essence, their home ranges. “Locating long-term feeding areas will really open up new possibilities for the conservation and management of these amazing creatures,” said Hart. The study, “Migration, foraging, and residency patterns for Northern Gulf of Mexico loggerheads: Implications of local threats and international movements” was recently published in the journal PLOS ONE. |
- Prev by Date: Nesting Gulf Sea Turtles Feed in Waters Filled With Threats
- Next by Date: New York Storm-Tide Sensor Network Strengthened plus 5 more
- Previous by thread: Nesting Gulf Sea Turtles Feed in Waters Filled With Threats
- Next by thread: New York Storm-Tide Sensor Network Strengthened plus 5 more
- Index(es):