The <linux/math.h> header has evolved upstream since we last imported it. Sync it with Linux to make available some more functions for use in barebox. Signed-off-by: Ahmad Fatoum <a.fatoum@xxxxxxxxxxxxxx> --- include/linux/math.h | 173 ++++++++++++++++++++++++++++++++++++------- lib/math/Makefile | 1 + lib/math/int_pow.c | 32 ++++++++ lib/math/int_sqrt.c | 44 ++++++++--- 4 files changed, 212 insertions(+), 38 deletions(-) create mode 100644 lib/math/int_pow.c diff --git a/include/linux/math.h b/include/linux/math.h index 48417aca7635..e7c47fa404ab 100644 --- a/include/linux/math.h +++ b/include/linux/math.h @@ -10,12 +10,27 @@ * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. - * - * NOTE these functions only round to power-of-2 arguments. Use - * roundup/rounddown for non power-of-2-arguments. */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) + +/** + * round_up - round up to next specified power of 2 + * @x: the value to round + * @y: multiple to round up to (must be a power of 2) + * + * Rounds @x up to next multiple of @y (which must be a power of 2). + * To perform arbitrary rounding up, use roundup() below. + */ #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) + +/** + * round_down - round down to next specified power of 2 + * @x: the value to round + * @y: multiple to round down to (must be a power of 2) + * + * Rounds @x down to next multiple of @y (which must be a power of 2). + * To perform arbitrary rounding down, use rounddown() below. + */ #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) @@ -26,10 +41,56 @@ #define DIV_ROUND_UP_ULL(ll, d) \ DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) +#if BITS_PER_LONG == 32 +# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) +#else +# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) +#endif + +/** + * roundup - round up to the next specified multiple + * @x: the value to up + * @y: multiple to round up to + * + * Rounds @x up to next multiple of @y. If @y will always be a power + * of 2, consider using the faster round_up(). + */ +#define roundup(x, y) ( \ +{ \ + typeof(y) __y = y; \ + (((x) + (__y - 1)) / __y) * __y; \ +} \ +) +/** + * rounddown - round down to next specified multiple + * @x: the value to round + * @y: multiple to round down to + * + * Rounds @x down to next multiple of @y. If @y will always be a power + * of 2, consider using the faster round_down(). + */ +#define rounddown(x, y) ( \ +{ \ + typeof(x) __x = (x); \ + __x - (__x % (y)); \ +} \ +) + +/* + * Divide positive or negative dividend by positive or negative divisor + * and round to closest integer. Result is undefined for negative + * divisors if the dividend variable type is unsigned and for negative + * dividends if the divisor variable type is unsigned. + */ #define DIV_ROUND_CLOSEST(x, divisor)( \ { \ - typeof(divisor) __divisor = divisor; \ - (((x) + ((__divisor) / 2)) / (__divisor)); \ + typeof(x) __x = x; \ + typeof(divisor) __d = divisor; \ + (((typeof(x))-1) > 0 || \ + ((typeof(divisor))-1) > 0 || \ + (((__x) > 0) == ((__d) > 0))) ? \ + (((__x) + ((__d) / 2)) / (__d)) : \ + (((__x) - ((__d) / 2)) / (__d)); \ } \ ) /* @@ -45,19 +106,16 @@ } \ ) -/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ -#define roundup(x, y) ( \ -{ \ - const typeof(y) __y = y; \ - (((x) + (__y - 1)) / __y) * __y; \ -} \ -) -#define rounddown(x, y) ( \ -{ \ - typeof(x) __x = (x); \ - __x - (__x % (y)); \ -} \ -) +#define __STRUCT_FRACT(type) \ +struct type##_fract { \ + __##type numerator; \ + __##type denominator; \ +}; +__STRUCT_FRACT(s16) +__STRUCT_FRACT(u16) +__STRUCT_FRACT(s32) +__STRUCT_FRACT(u32) +#undef __STRUCT_FRACT /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */ #define mult_frac(x, n, d) \ @@ -71,16 +129,79 @@ q * n_ + r * n_ / d_; \ }) -#define abs(x) ({ \ - long __x = (x); \ - (__x < 0) ? -__x : __x; \ - }) +#define sector_div(a, b) do_div(a, b) -#define abs64(x) ({ \ - s64 __x = (x); \ - (__x < 0) ? -__x : __x; \ - }) +/** + * abs - return absolute value of an argument + * @x: the value. If it is unsigned type, it is converted to signed type first. + * char is treated as if it was signed (regardless of whether it really is) + * but the macro's return type is preserved as char. + * + * Return: an absolute value of x. + */ +#define abs(x) __abs_choose_expr(x, long long, \ + __abs_choose_expr(x, long, \ + __abs_choose_expr(x, int, \ + __abs_choose_expr(x, short, \ + __abs_choose_expr(x, char, \ + __builtin_choose_expr( \ + __builtin_types_compatible_p(typeof(x), char), \ + (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ + ((void)0))))))) +#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ + __builtin_types_compatible_p(typeof(x), signed type) || \ + __builtin_types_compatible_p(typeof(x), unsigned type), \ + ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) + +/** + * abs_diff - return absolute value of the difference between the arguments + * @a: the first argument + * @b: the second argument + * + * @a and @b have to be of the same type. With this restriction we compare + * signed to signed and unsigned to unsigned. The result is the subtraction + * the smaller of the two from the bigger, hence result is always a positive + * value. + * + * Return: an absolute value of the difference between the @a and @b. + */ +#define abs_diff(a, b) ({ \ + typeof(a) __a = (a); \ + typeof(b) __b = (b); \ + (void)(&__a == &__b); \ + __a > __b ? (__a - __b) : (__b - __a); \ +}) + +/** + * reciprocal_scale - "scale" a value into range [0, ep_ro) + * @val: value + * @ep_ro: right open interval endpoint + * + * Perform a "reciprocal multiplication" in order to "scale" a value into + * range [0, @ep_ro), where the upper interval endpoint is right-open. + * This is useful, e.g. for accessing a index of an array containing + * @ep_ro elements, for example. Think of it as sort of modulus, only that + * the result isn't that of modulo. ;) Note that if initial input is a + * small value, then result will return 0. + * + * Return: a result based on @val in interval [0, @ep_ro). + */ +static inline u32 reciprocal_scale(u32 val, u32 ep_ro) +{ + return (u32)(((u64) val * ep_ro) >> 32); +} + +u64 int_pow(u64 base, unsigned int exp); unsigned long int_sqrt(unsigned long); +#if BITS_PER_LONG < 64 +u32 int_sqrt64(u64 x); +#else +static inline u32 int_sqrt64(u64 x) +{ + return (u32)int_sqrt(x); +} #endif + +#endif /* _LINUX_MATH_H */ diff --git a/lib/math/Makefile b/lib/math/Makefile index 71ab2b108689..197f92a097ed 100644 --- a/lib/math/Makefile +++ b/lib/math/Makefile @@ -3,4 +3,5 @@ obj-y += div64.o pbl-y += div64.o obj-y += rational.o +obj-y += int_pow.o obj-y += int_sqrt.o diff --git a/lib/math/int_pow.c b/lib/math/int_pow.c new file mode 100644 index 000000000000..0cf426e69bda --- /dev/null +++ b/lib/math/int_pow.c @@ -0,0 +1,32 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * An integer based power function + * + * Derived from drivers/video/backlight/pwm_bl.c + */ + +#include <linux/export.h> +#include <linux/math.h> +#include <linux/types.h> + +/** + * int_pow - computes the exponentiation of the given base and exponent + * @base: base which will be raised to the given power + * @exp: power to be raised to + * + * Computes: pow(base, exp), i.e. @base raised to the @exp power + */ +u64 int_pow(u64 base, unsigned int exp) +{ + u64 result = 1; + + while (exp) { + if (exp & 1) + result *= base; + exp >>= 1; + base *= base; + } + + return result; +} +EXPORT_SYMBOL_GPL(int_pow); diff --git a/lib/math/int_sqrt.c b/lib/math/int_sqrt.c index 105656d04661..f417e97003e1 100644 --- a/lib/math/int_sqrt.c +++ b/lib/math/int_sqrt.c @@ -1,17 +1,7 @@ -/* - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation; either version 2 of - * the License, or (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - */ +// SPDX-License-Identifier: GPL-2.0 #include <linux/math.h> +#include <linux/limits.h> #include <linux/export.h> /** @@ -42,3 +32,33 @@ unsigned long int_sqrt(unsigned long x) return y; } EXPORT_SYMBOL(int_sqrt); + +#if BITS_PER_LONG < 64 +/** + * int_sqrt64 - strongly typed int_sqrt function when minimum 64 bit input + * is expected. + * @x: 64bit integer of which to calculate the sqrt + */ +u32 int_sqrt64(u64 x) +{ + u64 b, m, y = 0; + + if (x <= ULONG_MAX) + return int_sqrt((unsigned long) x); + + m = 1ULL << ((fls64(x) - 1) & ~1ULL); + while (m != 0) { + b = y + m; + y >>= 1; + + if (x >= b) { + x -= b; + y += m; + } + m >>= 2; + } + + return y; +} +EXPORT_SYMBOL(int_sqrt64); +#endif -- 2.39.2