Hello Sascha, On 01.08.24 07:57, Sascha Hauer wrote: > This ports the functions needed for supporting elliptic curve cryptography > (ECC) from the Kernel. The code is taken from Linux-6.10 and mostly > unchanged. > > Signed-off-by: Sascha Hauer <s.hauer@xxxxxxxxxxxxxx> Acked-by: Ahmad Fatoum <a.fatoum@xxxxxxxxxxxxxx> > --- > crypto/Kconfig | 3 + > crypto/Makefile | 1 + > crypto/ecc.c | 1661 +++++++++++++++++++++++++++++++++ > crypto/ecc_curve_defs.h | 155 +++ > include/crypto/ecc_curve.h | 62 ++ > include/crypto/ecdh.h | 83 ++ > include/crypto/internal/ecc.h | 278 ++++++ > 7 files changed, 2243 insertions(+) > create mode 100644 crypto/ecc.c > create mode 100644 crypto/ecc_curve_defs.h > create mode 100644 include/crypto/ecc_curve.h > create mode 100644 include/crypto/ecdh.h > create mode 100644 include/crypto/internal/ecc.h > > diff --git a/crypto/Kconfig b/crypto/Kconfig > index 78b499f646..e953ef5e15 100644 > --- a/crypto/Kconfig > +++ b/crypto/Kconfig > @@ -153,4 +153,7 @@ config JWT > select BASE64 > select CRYPTO_RSA > > +config CRYPTO_ECC > + bool > + > endmenu > diff --git a/crypto/Makefile b/crypto/Makefile > index e84360a8c7..83c05761de 100644 > --- a/crypto/Makefile > +++ b/crypto/Makefile > @@ -18,6 +18,7 @@ obj-y += memneq.o > obj-$(CONFIG_CRYPTO_PBKDF2) += pbkdf2.o > obj-$(CONFIG_CRYPTO_RSA) += rsa.o > obj-$(CONFIG_CRYPTO_KEYSTORE) += keystore.o > +obj-$(CONFIG_CRYPTO_ECC) += ecc.o > > obj-$(CONFIG_JWT) += jwt.o > > diff --git a/crypto/ecc.c b/crypto/ecc.c > new file mode 100644 > index 0000000000..a0ab962262 > --- /dev/null > +++ b/crypto/ecc.c > @@ -0,0 +1,1661 @@ > +/* > + * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. > + * Copyright (c) 2019 Vitaly Chikunov <vt@xxxxxxxxxxxx> > + * > + * Redistribution and use in source and binary forms, with or without > + * modification, are permitted provided that the following conditions are > + * met: > + * * Redistributions of source code must retain the above copyright > + * notice, this list of conditions and the following disclaimer. > + * * Redistributions in binary form must reproduce the above copyright > + * notice, this list of conditions and the following disclaimer in the > + * documentation and/or other materials provided with the distribution. > + * > + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS > + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT > + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR > + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT > + * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, > + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT > + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, > + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY > + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT > + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE > + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. > + */ > + > +#include <common.h> > +#include <stdlib.h> > +#include <crypto/ecc_curve.h> > +#include <crypto/ecdh.h> > +#include <crypto/internal/ecc.h> > +#include <asm/unaligned.h> > + > +#include "ecc_curve_defs.h" > + > +typedef struct { > + u64 m_low; > + u64 m_high; > +} uint128_t; > + > +/* Returns curv25519 curve param */ > +const struct ecc_curve *ecc_get_curve25519(void) > +{ > + return &ecc_25519; > +} > +EXPORT_SYMBOL(ecc_get_curve25519); > + > +const struct ecc_curve *ecc_get_curve(unsigned int curve_id) > +{ > + switch (curve_id) { > + case ECC_CURVE_NIST_P192: > + return &nist_p192; > + case ECC_CURVE_NIST_P256: > + return &nist_p256; > + case ECC_CURVE_NIST_P384: > + return &nist_p384; > + case ECC_CURVE_NIST_P521: > + return &nist_p521; > + default: > + return NULL; > + } > +} > +EXPORT_SYMBOL(ecc_get_curve); > + > +void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes, > + u64 *out, unsigned int ndigits) > +{ > + int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64)); > + unsigned int o = nbytes & 7; > + __be64 msd = 0; > + > + /* diff > 0: not enough input bytes: set most significant digits to 0 */ > + if (diff > 0) { > + ndigits -= diff; > + memset(&out[ndigits - 1], 0, diff * sizeof(u64)); > + } > + > + if (o) { > + memcpy((u8 *)&msd + sizeof(msd) - o, in, o); > + out[--ndigits] = be64_to_cpu(msd); > + in += o; > + } > + ecc_swap_digits(in, out, ndigits); > +} > +EXPORT_SYMBOL(ecc_digits_from_bytes); > + > +static u64 *ecc_alloc_digits_space(unsigned int ndigits) > +{ > + size_t len = ndigits * sizeof(u64); > + > + if (!len) > + return NULL; > + > + return kmalloc(len, GFP_KERNEL); > +} > + > +static void ecc_free_digits_space(u64 *space) > +{ > + kfree_sensitive(space); > +} > + > +struct ecc_point *ecc_alloc_point(unsigned int ndigits) > +{ > + struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); > + > + if (!p) > + return NULL; > + > + p->x = ecc_alloc_digits_space(ndigits); > + if (!p->x) > + goto err_alloc_x; > + > + p->y = ecc_alloc_digits_space(ndigits); > + if (!p->y) > + goto err_alloc_y; > + > + p->ndigits = ndigits; > + > + return p; > + > +err_alloc_y: > + ecc_free_digits_space(p->x); > +err_alloc_x: > + kfree(p); > + return NULL; > +} > +EXPORT_SYMBOL(ecc_alloc_point); > + > +void ecc_free_point(struct ecc_point *p) > +{ > + if (!p) > + return; > + > + kfree_sensitive(p->x); > + kfree_sensitive(p->y); > + kfree_sensitive(p); > +} > +EXPORT_SYMBOL(ecc_free_point); > + > +static void vli_clear(u64 *vli, unsigned int ndigits) > +{ > + int i; > + > + for (i = 0; i < ndigits; i++) > + vli[i] = 0; > +} > + > +/* Returns true if vli == 0, false otherwise. */ > +bool vli_is_zero(const u64 *vli, unsigned int ndigits) > +{ > + int i; > + > + for (i = 0; i < ndigits; i++) { > + if (vli[i]) > + return false; > + } > + > + return true; > +} > +EXPORT_SYMBOL(vli_is_zero); > + > +/* Returns nonzero if bit of vli is set. */ > +static u64 vli_test_bit(const u64 *vli, unsigned int bit) > +{ > + return (vli[bit / 64] & ((u64)1 << (bit % 64))); > +} > + > +static bool vli_is_negative(const u64 *vli, unsigned int ndigits) > +{ > + return vli_test_bit(vli, ndigits * 64 - 1); > +} > + > +/* Counts the number of 64-bit "digits" in vli. */ > +static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) > +{ > + int i; > + > + /* Search from the end until we find a non-zero digit. > + * We do it in reverse because we expect that most digits will > + * be nonzero. > + */ > + for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); > + > + return (i + 1); > +} > + > +/* Counts the number of bits required for vli. */ > +unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) > +{ > + unsigned int i, num_digits; > + u64 digit; > + > + num_digits = vli_num_digits(vli, ndigits); > + if (num_digits == 0) > + return 0; > + > + digit = vli[num_digits - 1]; > + for (i = 0; digit; i++) > + digit >>= 1; > + > + return ((num_digits - 1) * 64 + i); > +} > +EXPORT_SYMBOL(vli_num_bits); > + > +/* Set dest from unaligned bit string src. */ > +void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) > +{ > + int i; > + const u64 *from = src; > + > + for (i = 0; i < ndigits; i++) > + dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); > +} > +EXPORT_SYMBOL(vli_from_be64); > + > +void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) > +{ > + int i; > + const u64 *from = src; > + > + for (i = 0; i < ndigits; i++) > + dest[i] = get_unaligned_le64(&from[i]); > +} > +EXPORT_SYMBOL(vli_from_le64); > + > +/* Sets dest = src. */ > +static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) > +{ > + int i; > + > + for (i = 0; i < ndigits; i++) > + dest[i] = src[i]; > +} > + > +/* Returns sign of left - right. */ > +int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) > +{ > + int i; > + > + for (i = ndigits - 1; i >= 0; i--) { > + if (left[i] > right[i]) > + return 1; > + else if (left[i] < right[i]) > + return -1; > + } > + > + return 0; > +} > +EXPORT_SYMBOL(vli_cmp); > + > +/* Computes result = in << c, returning carry. Can modify in place > + * (if result == in). 0 < shift < 64. > + */ > +static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, > + unsigned int ndigits) > +{ > + u64 carry = 0; > + int i; > + > + for (i = 0; i < ndigits; i++) { > + u64 temp = in[i]; > + > + result[i] = (temp << shift) | carry; > + carry = temp >> (64 - shift); > + } > + > + return carry; > +} > + > +/* Computes vli = vli >> 1. */ > +static void vli_rshift1(u64 *vli, unsigned int ndigits) > +{ > + u64 *end = vli; > + u64 carry = 0; > + > + vli += ndigits; > + > + while (vli-- > end) { > + u64 temp = *vli; > + *vli = (temp >> 1) | carry; > + carry = temp << 63; > + } > +} > + > +/* Computes result = left + right, returning carry. Can modify in place. */ > +static u64 vli_add(u64 *result, const u64 *left, const u64 *right, > + unsigned int ndigits) > +{ > + u64 carry = 0; > + int i; > + > + for (i = 0; i < ndigits; i++) { > + u64 sum; > + > + sum = left[i] + right[i] + carry; > + if (sum != left[i]) > + carry = (sum < left[i]); > + > + result[i] = sum; > + } > + > + return carry; > +} > + > +/* Computes result = left + right, returning carry. Can modify in place. */ > +static u64 vli_uadd(u64 *result, const u64 *left, u64 right, > + unsigned int ndigits) > +{ > + u64 carry = right; > + int i; > + > + for (i = 0; i < ndigits; i++) { > + u64 sum; > + > + sum = left[i] + carry; > + if (sum != left[i]) > + carry = (sum < left[i]); > + else > + carry = !!carry; > + > + result[i] = sum; > + } > + > + return carry; > +} > + > +/* Computes result = left - right, returning borrow. Can modify in place. */ > +u64 vli_sub(u64 *result, const u64 *left, const u64 *right, > + unsigned int ndigits) > +{ > + u64 borrow = 0; > + int i; > + > + for (i = 0; i < ndigits; i++) { > + u64 diff; > + > + diff = left[i] - right[i] - borrow; > + if (diff != left[i]) > + borrow = (diff > left[i]); > + > + result[i] = diff; > + } > + > + return borrow; > +} > +EXPORT_SYMBOL(vli_sub); > + > +/* Computes result = left - right, returning borrow. Can modify in place. */ > +static u64 vli_usub(u64 *result, const u64 *left, u64 right, > + unsigned int ndigits) > +{ > + u64 borrow = right; > + int i; > + > + for (i = 0; i < ndigits; i++) { > + u64 diff; > + > + diff = left[i] - borrow; > + if (diff != left[i]) > + borrow = (diff > left[i]); > + > + result[i] = diff; > + } > + > + return borrow; > +} > + > +static uint128_t mul_64_64(u64 left, u64 right) > +{ > + uint128_t result; > +#if defined(CONFIG_ARCH_SUPPORTS_INT128) > + unsigned __int128 m = (unsigned __int128)left * right; > + > + result.m_low = m; > + result.m_high = m >> 64; > +#else > + u64 a0 = left & 0xffffffffull; > + u64 a1 = left >> 32; > + u64 b0 = right & 0xffffffffull; > + u64 b1 = right >> 32; > + u64 m0 = a0 * b0; > + u64 m1 = a0 * b1; > + u64 m2 = a1 * b0; > + u64 m3 = a1 * b1; > + > + m2 += (m0 >> 32); > + m2 += m1; > + > + /* Overflow */ > + if (m2 < m1) > + m3 += 0x100000000ull; > + > + result.m_low = (m0 & 0xffffffffull) | (m2 << 32); > + result.m_high = m3 + (m2 >> 32); > +#endif > + return result; > +} > + > +static uint128_t add_128_128(uint128_t a, uint128_t b) > +{ > + uint128_t result; > + > + result.m_low = a.m_low + b.m_low; > + result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); > + > + return result; > +} > + > +static void vli_mult(u64 *result, const u64 *left, const u64 *right, > + unsigned int ndigits) > +{ > + uint128_t r01 = { 0, 0 }; > + u64 r2 = 0; > + unsigned int i, k; > + > + /* Compute each digit of result in sequence, maintaining the > + * carries. > + */ > + for (k = 0; k < ndigits * 2 - 1; k++) { > + unsigned int min; > + > + if (k < ndigits) > + min = 0; > + else > + min = (k + 1) - ndigits; > + > + for (i = min; i <= k && i < ndigits; i++) { > + uint128_t product; > + > + product = mul_64_64(left[i], right[k - i]); > + > + r01 = add_128_128(r01, product); > + r2 += (r01.m_high < product.m_high); > + } > + > + result[k] = r01.m_low; > + r01.m_low = r01.m_high; > + r01.m_high = r2; > + r2 = 0; > + } > + > + result[ndigits * 2 - 1] = r01.m_low; > +} > + > +/* Compute product = left * right, for a small right value. */ > +static void vli_umult(u64 *result, const u64 *left, u32 right, > + unsigned int ndigits) > +{ > + uint128_t r01 = { 0 }; > + unsigned int k; > + > + for (k = 0; k < ndigits; k++) { > + uint128_t product; > + > + product = mul_64_64(left[k], right); > + r01 = add_128_128(r01, product); > + /* no carry */ > + result[k] = r01.m_low; > + r01.m_low = r01.m_high; > + r01.m_high = 0; > + } > + result[k] = r01.m_low; > + for (++k; k < ndigits * 2; k++) > + result[k] = 0; > +} > + > +static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) > +{ > + uint128_t r01 = { 0, 0 }; > + u64 r2 = 0; > + int i, k; > + > + for (k = 0; k < ndigits * 2 - 1; k++) { > + unsigned int min; > + > + if (k < ndigits) > + min = 0; > + else > + min = (k + 1) - ndigits; > + > + for (i = min; i <= k && i <= k - i; i++) { > + uint128_t product; > + > + product = mul_64_64(left[i], left[k - i]); > + > + if (i < k - i) { > + r2 += product.m_high >> 63; > + product.m_high = (product.m_high << 1) | > + (product.m_low >> 63); > + product.m_low <<= 1; > + } > + > + r01 = add_128_128(r01, product); > + r2 += (r01.m_high < product.m_high); > + } > + > + result[k] = r01.m_low; > + r01.m_low = r01.m_high; > + r01.m_high = r2; > + r2 = 0; > + } > + > + result[ndigits * 2 - 1] = r01.m_low; > +} > + > +/* Computes result = (left + right) % mod. > + * Assumes that left < mod and right < mod, result != mod. > + */ > +static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, > + const u64 *mod, unsigned int ndigits) > +{ > + u64 carry; > + > + carry = vli_add(result, left, right, ndigits); > + > + /* result > mod (result = mod + remainder), so subtract mod to > + * get remainder. > + */ > + if (carry || vli_cmp(result, mod, ndigits) >= 0) > + vli_sub(result, result, mod, ndigits); > +} > + > +/* Computes result = (left - right) % mod. > + * Assumes that left < mod and right < mod, result != mod. > + */ > +static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, > + const u64 *mod, unsigned int ndigits) > +{ > + u64 borrow = vli_sub(result, left, right, ndigits); > + > + /* In this case, p_result == -diff == (max int) - diff. > + * Since -x % d == d - x, we can get the correct result from > + * result + mod (with overflow). > + */ > + if (borrow) > + vli_add(result, result, mod, ndigits); > +} > + > +/* > + * Computes result = product % mod > + * for special form moduli: p = 2^k-c, for small c (note the minus sign) > + * > + * References: > + * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. > + * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form > + * Algorithm 9.2.13 (Fast mod operation for special-form moduli). > + */ > +static void vli_mmod_special(u64 *result, const u64 *product, > + const u64 *mod, unsigned int ndigits) > +{ > + u64 c = -mod[0]; > + u64 t[ECC_MAX_DIGITS * 2]; > + u64 r[ECC_MAX_DIGITS * 2]; > + > + vli_set(r, product, ndigits * 2); > + while (!vli_is_zero(r + ndigits, ndigits)) { > + vli_umult(t, r + ndigits, c, ndigits); > + vli_clear(r + ndigits, ndigits); > + vli_add(r, r, t, ndigits * 2); > + } > + vli_set(t, mod, ndigits); > + vli_clear(t + ndigits, ndigits); > + while (vli_cmp(r, t, ndigits * 2) >= 0) > + vli_sub(r, r, t, ndigits * 2); > + vli_set(result, r, ndigits); > +} > + > +/* > + * Computes result = product % mod > + * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) > + * where k-1 does not fit into qword boundary by -1 bit (such as 255). > + > + * References (loosely based on): > + * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. > + * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. > + * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf > + * > + * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. > + * Handbook of Elliptic and Hyperelliptic Curve Cryptography. > + * Algorithm 10.25 Fast reduction for special form moduli > + */ > +static void vli_mmod_special2(u64 *result, const u64 *product, > + const u64 *mod, unsigned int ndigits) > +{ > + u64 c2 = mod[0] * 2; > + u64 q[ECC_MAX_DIGITS]; > + u64 r[ECC_MAX_DIGITS * 2]; > + u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ > + int carry; /* last bit that doesn't fit into q */ > + int i; > + > + vli_set(m, mod, ndigits); > + vli_clear(m + ndigits, ndigits); > + > + vli_set(r, product, ndigits); > + /* q and carry are top bits */ > + vli_set(q, product + ndigits, ndigits); > + vli_clear(r + ndigits, ndigits); > + carry = vli_is_negative(r, ndigits); > + if (carry) > + r[ndigits - 1] &= (1ull << 63) - 1; > + for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { > + u64 qc[ECC_MAX_DIGITS * 2]; > + > + vli_umult(qc, q, c2, ndigits); > + if (carry) > + vli_uadd(qc, qc, mod[0], ndigits * 2); > + vli_set(q, qc + ndigits, ndigits); > + vli_clear(qc + ndigits, ndigits); > + carry = vli_is_negative(qc, ndigits); > + if (carry) > + qc[ndigits - 1] &= (1ull << 63) - 1; > + if (i & 1) > + vli_sub(r, r, qc, ndigits * 2); > + else > + vli_add(r, r, qc, ndigits * 2); > + } > + while (vli_is_negative(r, ndigits * 2)) > + vli_add(r, r, m, ndigits * 2); > + while (vli_cmp(r, m, ndigits * 2) >= 0) > + vli_sub(r, r, m, ndigits * 2); > + > + vli_set(result, r, ndigits); > +} > + > +/* > + * Computes result = product % mod, where product is 2N words long. > + * Reference: Ken MacKay's micro-ecc. > + * Currently only designed to work for curve_p or curve_n. > + */ > +static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, > + unsigned int ndigits) > +{ > + u64 mod_m[2 * ECC_MAX_DIGITS]; > + u64 tmp[2 * ECC_MAX_DIGITS]; > + u64 *v[2] = { tmp, product }; > + u64 carry = 0; > + unsigned int i; > + /* Shift mod so its highest set bit is at the maximum position. */ > + int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); > + int word_shift = shift / 64; > + int bit_shift = shift % 64; > + > + vli_clear(mod_m, word_shift); > + if (bit_shift > 0) { > + for (i = 0; i < ndigits; ++i) { > + mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; > + carry = mod[i] >> (64 - bit_shift); > + } > + } else > + vli_set(mod_m + word_shift, mod, ndigits); > + > + for (i = 1; shift >= 0; --shift) { > + u64 borrow = 0; > + unsigned int j; > + > + for (j = 0; j < ndigits * 2; ++j) { > + u64 diff = v[i][j] - mod_m[j] - borrow; > + > + if (diff != v[i][j]) > + borrow = (diff > v[i][j]); > + v[1 - i][j] = diff; > + } > + i = !(i ^ borrow); /* Swap the index if there was no borrow */ > + vli_rshift1(mod_m, ndigits); > + mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); > + vli_rshift1(mod_m + ndigits, ndigits); > + } > + vli_set(result, v[i], ndigits); > +} > + > +/* Computes result = product % mod using Barrett's reduction with precomputed > + * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have > + * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits > + * boundary. > + * > + * Reference: > + * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. > + * 2.4.1 Barrett's algorithm. Algorithm 2.5. > + */ > +static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, > + unsigned int ndigits) > +{ > + u64 q[ECC_MAX_DIGITS * 2]; > + u64 r[ECC_MAX_DIGITS * 2]; > + const u64 *mu = mod + ndigits; > + > + vli_mult(q, product + ndigits, mu, ndigits); > + if (mu[ndigits]) > + vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); > + vli_mult(r, mod, q + ndigits, ndigits); > + vli_sub(r, product, r, ndigits * 2); > + while (!vli_is_zero(r + ndigits, ndigits) || > + vli_cmp(r, mod, ndigits) != -1) { > + u64 carry; > + > + carry = vli_sub(r, r, mod, ndigits); > + vli_usub(r + ndigits, r + ndigits, carry, ndigits); > + } > + vli_set(result, r, ndigits); > +} > + > +/* Computes p_result = p_product % curve_p. > + * See algorithm 5 and 6 from > + * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf > + */ > +static void vli_mmod_fast_192(u64 *result, const u64 *product, > + const u64 *curve_prime, u64 *tmp) > +{ > + const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS; > + int carry; > + > + vli_set(result, product, ndigits); > + > + vli_set(tmp, &product[3], ndigits); > + carry = vli_add(result, result, tmp, ndigits); > + > + tmp[0] = 0; > + tmp[1] = product[3]; > + tmp[2] = product[4]; > + carry += vli_add(result, result, tmp, ndigits); > + > + tmp[0] = tmp[1] = product[5]; > + tmp[2] = 0; > + carry += vli_add(result, result, tmp, ndigits); > + > + while (carry || vli_cmp(curve_prime, result, ndigits) != 1) > + carry -= vli_sub(result, result, curve_prime, ndigits); > +} > + > +/* Computes result = product % curve_prime > + * from http://www.nsa.gov/ia/_files/nist-routines.pdf > + */ > +static void vli_mmod_fast_256(u64 *result, const u64 *product, > + const u64 *curve_prime, u64 *tmp) > +{ > + int carry; > + const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS; > + > + /* t */ > + vli_set(result, product, ndigits); > + > + /* s1 */ > + tmp[0] = 0; > + tmp[1] = product[5] & 0xffffffff00000000ull; > + tmp[2] = product[6]; > + tmp[3] = product[7]; > + carry = vli_lshift(tmp, tmp, 1, ndigits); > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s2 */ > + tmp[1] = product[6] << 32; > + tmp[2] = (product[6] >> 32) | (product[7] << 32); > + tmp[3] = product[7] >> 32; > + carry += vli_lshift(tmp, tmp, 1, ndigits); > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s3 */ > + tmp[0] = product[4]; > + tmp[1] = product[5] & 0xffffffff; > + tmp[2] = 0; > + tmp[3] = product[7]; > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s4 */ > + tmp[0] = (product[4] >> 32) | (product[5] << 32); > + tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); > + tmp[2] = product[7]; > + tmp[3] = (product[6] >> 32) | (product[4] << 32); > + carry += vli_add(result, result, tmp, ndigits); > + > + /* d1 */ > + tmp[0] = (product[5] >> 32) | (product[6] << 32); > + tmp[1] = (product[6] >> 32); > + tmp[2] = 0; > + tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); > + carry -= vli_sub(result, result, tmp, ndigits); > + > + /* d2 */ > + tmp[0] = product[6]; > + tmp[1] = product[7]; > + tmp[2] = 0; > + tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); > + carry -= vli_sub(result, result, tmp, ndigits); > + > + /* d3 */ > + tmp[0] = (product[6] >> 32) | (product[7] << 32); > + tmp[1] = (product[7] >> 32) | (product[4] << 32); > + tmp[2] = (product[4] >> 32) | (product[5] << 32); > + tmp[3] = (product[6] << 32); > + carry -= vli_sub(result, result, tmp, ndigits); > + > + /* d4 */ > + tmp[0] = product[7]; > + tmp[1] = product[4] & 0xffffffff00000000ull; > + tmp[2] = product[5]; > + tmp[3] = product[6] & 0xffffffff00000000ull; > + carry -= vli_sub(result, result, tmp, ndigits); > + > + if (carry < 0) { > + do { > + carry += vli_add(result, result, curve_prime, ndigits); > + } while (carry < 0); > + } else { > + while (carry || vli_cmp(curve_prime, result, ndigits) != 1) > + carry -= vli_sub(result, result, curve_prime, ndigits); > + } > +} > + > +#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32) > +#define AND64H(x64) (x64 & 0xffFFffFF00000000ull) > +#define AND64L(x64) (x64 & 0x00000000ffFFffFFull) > + > +/* Computes result = product % curve_prime > + * from "Mathematical routines for the NIST prime elliptic curves" > + */ > +static void vli_mmod_fast_384(u64 *result, const u64 *product, > + const u64 *curve_prime, u64 *tmp) > +{ > + int carry; > + const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS; > + > + /* t */ > + vli_set(result, product, ndigits); > + > + /* s1 */ > + tmp[0] = 0; // 0 || 0 > + tmp[1] = 0; // 0 || 0 > + tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 > + tmp[3] = product[11]>>32; // 0 ||a23 > + tmp[4] = 0; // 0 || 0 > + tmp[5] = 0; // 0 || 0 > + carry = vli_lshift(tmp, tmp, 1, ndigits); > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s2 */ > + tmp[0] = product[6]; //a13||a12 > + tmp[1] = product[7]; //a15||a14 > + tmp[2] = product[8]; //a17||a16 > + tmp[3] = product[9]; //a19||a18 > + tmp[4] = product[10]; //a21||a20 > + tmp[5] = product[11]; //a23||a22 > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s3 */ > + tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 > + tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 > + tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13 > + tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 > + tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 > + tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s4 */ > + tmp[0] = AND64H(product[11]); //a23|| 0 > + tmp[1] = (product[10]<<32); //a20|| 0 > + tmp[2] = product[6]; //a13||a12 > + tmp[3] = product[7]; //a15||a14 > + tmp[4] = product[8]; //a17||a16 > + tmp[5] = product[9]; //a19||a18 > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s5 */ > + tmp[0] = 0; // 0|| 0 > + tmp[1] = 0; // 0|| 0 > + tmp[2] = product[10]; //a21||a20 > + tmp[3] = product[11]; //a23||a22 > + tmp[4] = 0; // 0|| 0 > + tmp[5] = 0; // 0|| 0 > + carry += vli_add(result, result, tmp, ndigits); > + > + /* s6 */ > + tmp[0] = AND64L(product[10]); // 0 ||a20 > + tmp[1] = AND64H(product[10]); //a21|| 0 > + tmp[2] = product[11]; //a23||a22 > + tmp[3] = 0; // 0 || 0 > + tmp[4] = 0; // 0 || 0 > + tmp[5] = 0; // 0 || 0 > + carry += vli_add(result, result, tmp, ndigits); > + > + /* d1 */ > + tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 > + tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13 > + tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 > + tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 > + tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 > + tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 > + carry -= vli_sub(result, result, tmp, ndigits); > + > + /* d2 */ > + tmp[0] = (product[10]<<32); //a20|| 0 > + tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 > + tmp[2] = (product[11]>>32); // 0 ||a23 > + tmp[3] = 0; // 0 || 0 > + tmp[4] = 0; // 0 || 0 > + tmp[5] = 0; // 0 || 0 > + carry -= vli_sub(result, result, tmp, ndigits); > + > + /* d3 */ > + tmp[0] = 0; // 0 || 0 > + tmp[1] = AND64H(product[11]); //a23|| 0 > + tmp[2] = product[11]>>32; // 0 ||a23 > + tmp[3] = 0; // 0 || 0 > + tmp[4] = 0; // 0 || 0 > + tmp[5] = 0; // 0 || 0 > + carry -= vli_sub(result, result, tmp, ndigits); > + > + if (carry < 0) { > + do { > + carry += vli_add(result, result, curve_prime, ndigits); > + } while (carry < 0); > + } else { > + while (carry || vli_cmp(curve_prime, result, ndigits) != 1) > + carry -= vli_sub(result, result, curve_prime, ndigits); > + } > + > +} > + > +#undef SL32OR32 > +#undef AND64H > +#undef AND64L > + > +/* > + * Computes result = product % curve_prime > + * from "Recommendations for Discrete Logarithm-Based Cryptography: > + * Elliptic Curve Domain Parameters" section G.1.4 > + */ > +static void vli_mmod_fast_521(u64 *result, const u64 *product, > + const u64 *curve_prime, u64 *tmp) > +{ > + const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS; > + size_t i; > + > + /* Initialize result with lowest 521 bits from product */ > + vli_set(result, product, ndigits); > + result[8] &= 0x1ff; > + > + for (i = 0; i < ndigits; i++) > + tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55); > + tmp[8] &= 0x1ff; > + > + vli_mod_add(result, result, tmp, curve_prime, ndigits); > +} > + > +/* Computes result = product % curve_prime for different curve_primes. > + * > + * Note that curve_primes are distinguished just by heuristic check and > + * not by complete conformance check. > + */ > +static bool vli_mmod_fast(u64 *result, u64 *product, > + const struct ecc_curve *curve) > +{ > + u64 tmp[2 * ECC_MAX_DIGITS]; > + const u64 *curve_prime = curve->p; > + const unsigned int ndigits = curve->g.ndigits; > + > + /* All NIST curves have name prefix 'nist_' */ > + if (strncmp(curve->name, "nist_", 5) != 0) { > + /* Try to handle Pseudo-Marsenne primes. */ > + if (curve_prime[ndigits - 1] == -1ull) { > + vli_mmod_special(result, product, curve_prime, > + ndigits); > + return true; > + } else if (curve_prime[ndigits - 1] == 1ull << 63 && > + curve_prime[ndigits - 2] == 0) { > + vli_mmod_special2(result, product, curve_prime, > + ndigits); > + return true; > + } > + vli_mmod_barrett(result, product, curve_prime, ndigits); > + return true; > + } > + > + switch (ndigits) { > + case ECC_CURVE_NIST_P192_DIGITS: > + vli_mmod_fast_192(result, product, curve_prime, tmp); > + break; > + case ECC_CURVE_NIST_P256_DIGITS: > + vli_mmod_fast_256(result, product, curve_prime, tmp); > + break; > + case ECC_CURVE_NIST_P384_DIGITS: > + vli_mmod_fast_384(result, product, curve_prime, tmp); > + break; > + case ECC_CURVE_NIST_P521_DIGITS: > + vli_mmod_fast_521(result, product, curve_prime, tmp); > + break; > + default: > + pr_err("ecc: unsupported digits size!\n"); > + return false; > + } > + > + return true; > +} > + > +/* Computes result = (left * right) % mod. > + * Assumes that mod is big enough curve order. > + */ > +void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, > + const u64 *mod, unsigned int ndigits) > +{ > + u64 product[ECC_MAX_DIGITS * 2]; > + > + vli_mult(product, left, right, ndigits); > + vli_mmod_slow(result, product, mod, ndigits); > +} > +EXPORT_SYMBOL(vli_mod_mult_slow); > + > +/* Computes result = (left * right) % curve_prime. */ > +static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, > + const struct ecc_curve *curve) > +{ > + u64 product[2 * ECC_MAX_DIGITS]; > + > + vli_mult(product, left, right, curve->g.ndigits); > + vli_mmod_fast(result, product, curve); > +} > + > +/* Computes result = left^2 % curve_prime. */ > +static void vli_mod_square_fast(u64 *result, const u64 *left, > + const struct ecc_curve *curve) > +{ > + u64 product[2 * ECC_MAX_DIGITS]; > + > + vli_square(product, left, curve->g.ndigits); > + vli_mmod_fast(result, product, curve); > +} > + > +#define EVEN(vli) (!(vli[0] & 1)) > +/* Computes result = (1 / p_input) % mod. All VLIs are the same size. > + * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" > + * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf > + */ > +void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, > + unsigned int ndigits) > +{ > + u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; > + u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; > + u64 carry; > + int cmp_result; > + > + if (vli_is_zero(input, ndigits)) { > + vli_clear(result, ndigits); > + return; > + } > + > + vli_set(a, input, ndigits); > + vli_set(b, mod, ndigits); > + vli_clear(u, ndigits); > + u[0] = 1; > + vli_clear(v, ndigits); > + > + while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { > + carry = 0; > + > + if (EVEN(a)) { > + vli_rshift1(a, ndigits); > + > + if (!EVEN(u)) > + carry = vli_add(u, u, mod, ndigits); > + > + vli_rshift1(u, ndigits); > + if (carry) > + u[ndigits - 1] |= 0x8000000000000000ull; > + } else if (EVEN(b)) { > + vli_rshift1(b, ndigits); > + > + if (!EVEN(v)) > + carry = vli_add(v, v, mod, ndigits); > + > + vli_rshift1(v, ndigits); > + if (carry) > + v[ndigits - 1] |= 0x8000000000000000ull; > + } else if (cmp_result > 0) { > + vli_sub(a, a, b, ndigits); > + vli_rshift1(a, ndigits); > + > + if (vli_cmp(u, v, ndigits) < 0) > + vli_add(u, u, mod, ndigits); > + > + vli_sub(u, u, v, ndigits); > + if (!EVEN(u)) > + carry = vli_add(u, u, mod, ndigits); > + > + vli_rshift1(u, ndigits); > + if (carry) > + u[ndigits - 1] |= 0x8000000000000000ull; > + } else { > + vli_sub(b, b, a, ndigits); > + vli_rshift1(b, ndigits); > + > + if (vli_cmp(v, u, ndigits) < 0) > + vli_add(v, v, mod, ndigits); > + > + vli_sub(v, v, u, ndigits); > + if (!EVEN(v)) > + carry = vli_add(v, v, mod, ndigits); > + > + vli_rshift1(v, ndigits); > + if (carry) > + v[ndigits - 1] |= 0x8000000000000000ull; > + } > + } > + > + vli_set(result, u, ndigits); > +} > +EXPORT_SYMBOL(vli_mod_inv); > + > +/* ------ Point operations ------ */ > + > +/* Returns true if p_point is the point at infinity, false otherwise. */ > +bool ecc_point_is_zero(const struct ecc_point *point) > +{ > + return (vli_is_zero(point->x, point->ndigits) && > + vli_is_zero(point->y, point->ndigits)); > +} > +EXPORT_SYMBOL(ecc_point_is_zero); > + > +/* Point multiplication algorithm using Montgomery's ladder with co-Z > + * coordinates. From https://eprint.iacr.org/2011/338.pdf > + */ > + > +/* Double in place */ > +static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, > + const struct ecc_curve *curve) > +{ > + /* t1 = x, t2 = y, t3 = z */ > + u64 t4[ECC_MAX_DIGITS]; > + u64 t5[ECC_MAX_DIGITS]; > + const u64 *curve_prime = curve->p; > + const unsigned int ndigits = curve->g.ndigits; > + > + if (vli_is_zero(z1, ndigits)) > + return; > + > + /* t4 = y1^2 */ > + vli_mod_square_fast(t4, y1, curve); > + /* t5 = x1*y1^2 = A */ > + vli_mod_mult_fast(t5, x1, t4, curve); > + /* t4 = y1^4 */ > + vli_mod_square_fast(t4, t4, curve); > + /* t2 = y1*z1 = z3 */ > + vli_mod_mult_fast(y1, y1, z1, curve); > + /* t3 = z1^2 */ > + vli_mod_square_fast(z1, z1, curve); > + > + /* t1 = x1 + z1^2 */ > + vli_mod_add(x1, x1, z1, curve_prime, ndigits); > + /* t3 = 2*z1^2 */ > + vli_mod_add(z1, z1, z1, curve_prime, ndigits); > + /* t3 = x1 - z1^2 */ > + vli_mod_sub(z1, x1, z1, curve_prime, ndigits); > + /* t1 = x1^2 - z1^4 */ > + vli_mod_mult_fast(x1, x1, z1, curve); > + > + /* t3 = 2*(x1^2 - z1^4) */ > + vli_mod_add(z1, x1, x1, curve_prime, ndigits); > + /* t1 = 3*(x1^2 - z1^4) */ > + vli_mod_add(x1, x1, z1, curve_prime, ndigits); > + if (vli_test_bit(x1, 0)) { > + u64 carry = vli_add(x1, x1, curve_prime, ndigits); > + > + vli_rshift1(x1, ndigits); > + x1[ndigits - 1] |= carry << 63; > + } else { > + vli_rshift1(x1, ndigits); > + } > + /* t1 = 3/2*(x1^2 - z1^4) = B */ > + > + /* t3 = B^2 */ > + vli_mod_square_fast(z1, x1, curve); > + /* t3 = B^2 - A */ > + vli_mod_sub(z1, z1, t5, curve_prime, ndigits); > + /* t3 = B^2 - 2A = x3 */ > + vli_mod_sub(z1, z1, t5, curve_prime, ndigits); > + /* t5 = A - x3 */ > + vli_mod_sub(t5, t5, z1, curve_prime, ndigits); > + /* t1 = B * (A - x3) */ > + vli_mod_mult_fast(x1, x1, t5, curve); > + /* t4 = B * (A - x3) - y1^4 = y3 */ > + vli_mod_sub(t4, x1, t4, curve_prime, ndigits); > + > + vli_set(x1, z1, ndigits); > + vli_set(z1, y1, ndigits); > + vli_set(y1, t4, ndigits); > +} > + > +/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ > +static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve) > +{ > + u64 t1[ECC_MAX_DIGITS]; > + > + vli_mod_square_fast(t1, z, curve); /* z^2 */ > + vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */ > + vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */ > + vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */ > +} > + > +/* P = (x1, y1) => 2P, (x2, y2) => P' */ > +static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, > + u64 *p_initial_z, const struct ecc_curve *curve) > +{ > + u64 z[ECC_MAX_DIGITS]; > + const unsigned int ndigits = curve->g.ndigits; > + > + vli_set(x2, x1, ndigits); > + vli_set(y2, y1, ndigits); > + > + vli_clear(z, ndigits); > + z[0] = 1; > + > + if (p_initial_z) > + vli_set(z, p_initial_z, ndigits); > + > + apply_z(x1, y1, z, curve); > + > + ecc_point_double_jacobian(x1, y1, z, curve); > + > + apply_z(x2, y2, z, curve); > +} > + > +/* Input P = (x1, y1, Z), Q = (x2, y2, Z) > + * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) > + * or P => P', Q => P + Q > + */ > +static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, > + const struct ecc_curve *curve) > +{ > + /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ > + u64 t5[ECC_MAX_DIGITS]; > + const u64 *curve_prime = curve->p; > + const unsigned int ndigits = curve->g.ndigits; > + > + /* t5 = x2 - x1 */ > + vli_mod_sub(t5, x2, x1, curve_prime, ndigits); > + /* t5 = (x2 - x1)^2 = A */ > + vli_mod_square_fast(t5, t5, curve); > + /* t1 = x1*A = B */ > + vli_mod_mult_fast(x1, x1, t5, curve); > + /* t3 = x2*A = C */ > + vli_mod_mult_fast(x2, x2, t5, curve); > + /* t4 = y2 - y1 */ > + vli_mod_sub(y2, y2, y1, curve_prime, ndigits); > + /* t5 = (y2 - y1)^2 = D */ > + vli_mod_square_fast(t5, y2, curve); > + > + /* t5 = D - B */ > + vli_mod_sub(t5, t5, x1, curve_prime, ndigits); > + /* t5 = D - B - C = x3 */ > + vli_mod_sub(t5, t5, x2, curve_prime, ndigits); > + /* t3 = C - B */ > + vli_mod_sub(x2, x2, x1, curve_prime, ndigits); > + /* t2 = y1*(C - B) */ > + vli_mod_mult_fast(y1, y1, x2, curve); > + /* t3 = B - x3 */ > + vli_mod_sub(x2, x1, t5, curve_prime, ndigits); > + /* t4 = (y2 - y1)*(B - x3) */ > + vli_mod_mult_fast(y2, y2, x2, curve); > + /* t4 = y3 */ > + vli_mod_sub(y2, y2, y1, curve_prime, ndigits); > + > + vli_set(x2, t5, ndigits); > +} > + > +/* Input P = (x1, y1, Z), Q = (x2, y2, Z) > + * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) > + * or P => P - Q, Q => P + Q > + */ > +static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, > + const struct ecc_curve *curve) > +{ > + /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ > + u64 t5[ECC_MAX_DIGITS]; > + u64 t6[ECC_MAX_DIGITS]; > + u64 t7[ECC_MAX_DIGITS]; > + const u64 *curve_prime = curve->p; > + const unsigned int ndigits = curve->g.ndigits; > + > + /* t5 = x2 - x1 */ > + vli_mod_sub(t5, x2, x1, curve_prime, ndigits); > + /* t5 = (x2 - x1)^2 = A */ > + vli_mod_square_fast(t5, t5, curve); > + /* t1 = x1*A = B */ > + vli_mod_mult_fast(x1, x1, t5, curve); > + /* t3 = x2*A = C */ > + vli_mod_mult_fast(x2, x2, t5, curve); > + /* t4 = y2 + y1 */ > + vli_mod_add(t5, y2, y1, curve_prime, ndigits); > + /* t4 = y2 - y1 */ > + vli_mod_sub(y2, y2, y1, curve_prime, ndigits); > + > + /* t6 = C - B */ > + vli_mod_sub(t6, x2, x1, curve_prime, ndigits); > + /* t2 = y1 * (C - B) */ > + vli_mod_mult_fast(y1, y1, t6, curve); > + /* t6 = B + C */ > + vli_mod_add(t6, x1, x2, curve_prime, ndigits); > + /* t3 = (y2 - y1)^2 */ > + vli_mod_square_fast(x2, y2, curve); > + /* t3 = x3 */ > + vli_mod_sub(x2, x2, t6, curve_prime, ndigits); > + > + /* t7 = B - x3 */ > + vli_mod_sub(t7, x1, x2, curve_prime, ndigits); > + /* t4 = (y2 - y1)*(B - x3) */ > + vli_mod_mult_fast(y2, y2, t7, curve); > + /* t4 = y3 */ > + vli_mod_sub(y2, y2, y1, curve_prime, ndigits); > + > + /* t7 = (y2 + y1)^2 = F */ > + vli_mod_square_fast(t7, t5, curve); > + /* t7 = x3' */ > + vli_mod_sub(t7, t7, t6, curve_prime, ndigits); > + /* t6 = x3' - B */ > + vli_mod_sub(t6, t7, x1, curve_prime, ndigits); > + /* t6 = (y2 + y1)*(x3' - B) */ > + vli_mod_mult_fast(t6, t6, t5, curve); > + /* t2 = y3' */ > + vli_mod_sub(y1, t6, y1, curve_prime, ndigits); > + > + vli_set(x1, t7, ndigits); > +} > + > +static void ecc_point_mult(struct ecc_point *result, > + const struct ecc_point *point, const u64 *scalar, > + u64 *initial_z, const struct ecc_curve *curve, > + unsigned int ndigits) > +{ > + /* R0 and R1 */ > + u64 rx[2][ECC_MAX_DIGITS]; > + u64 ry[2][ECC_MAX_DIGITS]; > + u64 z[ECC_MAX_DIGITS]; > + u64 sk[2][ECC_MAX_DIGITS]; > + u64 *curve_prime = curve->p; > + int i, nb; > + int num_bits; > + int carry; > + > + carry = vli_add(sk[0], scalar, curve->n, ndigits); > + vli_add(sk[1], sk[0], curve->n, ndigits); > + scalar = sk[!carry]; > + if (curve->nbits == 521) /* NIST P521 */ > + num_bits = curve->nbits + 2; > + else > + num_bits = sizeof(u64) * ndigits * 8 + 1; > + > + vli_set(rx[1], point->x, ndigits); > + vli_set(ry[1], point->y, ndigits); > + > + xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve); > + > + for (i = num_bits - 2; i > 0; i--) { > + nb = !vli_test_bit(scalar, i); > + xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); > + xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); > + } > + > + nb = !vli_test_bit(scalar, 0); > + xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); > + > + /* Find final 1/Z value. */ > + /* X1 - X0 */ > + vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); > + /* Yb * (X1 - X0) */ > + vli_mod_mult_fast(z, z, ry[1 - nb], curve); > + /* xP * Yb * (X1 - X0) */ > + vli_mod_mult_fast(z, z, point->x, curve); > + > + /* 1 / (xP * Yb * (X1 - X0)) */ > + vli_mod_inv(z, z, curve_prime, point->ndigits); > + > + /* yP / (xP * Yb * (X1 - X0)) */ > + vli_mod_mult_fast(z, z, point->y, curve); > + /* Xb * yP / (xP * Yb * (X1 - X0)) */ > + vli_mod_mult_fast(z, z, rx[1 - nb], curve); > + /* End 1/Z calculation */ > + > + xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); > + > + apply_z(rx[0], ry[0], z, curve); > + > + vli_set(result->x, rx[0], ndigits); > + vli_set(result->y, ry[0], ndigits); > +} > + > +/* Computes R = P + Q mod p */ > +static void ecc_point_add(const struct ecc_point *result, > + const struct ecc_point *p, const struct ecc_point *q, > + const struct ecc_curve *curve) > +{ > + u64 z[ECC_MAX_DIGITS]; > + u64 px[ECC_MAX_DIGITS]; > + u64 py[ECC_MAX_DIGITS]; > + unsigned int ndigits = curve->g.ndigits; > + > + vli_set(result->x, q->x, ndigits); > + vli_set(result->y, q->y, ndigits); > + vli_mod_sub(z, result->x, p->x, curve->p, ndigits); > + vli_set(px, p->x, ndigits); > + vli_set(py, p->y, ndigits); > + xycz_add(px, py, result->x, result->y, curve); > + vli_mod_inv(z, z, curve->p, ndigits); > + apply_z(result->x, result->y, z, curve); > +} > + > +/* Computes R = u1P + u2Q mod p using Shamir's trick. > + * Based on: Kenneth MacKay's micro-ecc (2014). > + */ > +void ecc_point_mult_shamir(const struct ecc_point *result, > + const u64 *u1, const struct ecc_point *p, > + const u64 *u2, const struct ecc_point *q, > + const struct ecc_curve *curve) > +{ > + u64 z[ECC_MAX_DIGITS]; > + u64 sump[2][ECC_MAX_DIGITS]; > + u64 *rx = result->x; > + u64 *ry = result->y; > + unsigned int ndigits = curve->g.ndigits; > + unsigned int num_bits; > + struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); > + const struct ecc_point *points[4]; > + const struct ecc_point *point; > + unsigned int idx; > + int i; > + > + ecc_point_add(&sum, p, q, curve); > + points[0] = NULL; > + points[1] = p; > + points[2] = q; > + points[3] = ∑ > + > + num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits)); > + i = num_bits - 1; > + idx = !!vli_test_bit(u1, i); > + idx |= (!!vli_test_bit(u2, i)) << 1; > + point = points[idx]; > + > + vli_set(rx, point->x, ndigits); > + vli_set(ry, point->y, ndigits); > + vli_clear(z + 1, ndigits - 1); > + z[0] = 1; > + > + for (--i; i >= 0; i--) { > + ecc_point_double_jacobian(rx, ry, z, curve); > + idx = !!vli_test_bit(u1, i); > + idx |= (!!vli_test_bit(u2, i)) << 1; > + point = points[idx]; > + if (point) { > + u64 tx[ECC_MAX_DIGITS]; > + u64 ty[ECC_MAX_DIGITS]; > + u64 tz[ECC_MAX_DIGITS]; > + > + vli_set(tx, point->x, ndigits); > + vli_set(ty, point->y, ndigits); > + apply_z(tx, ty, z, curve); > + vli_mod_sub(tz, rx, tx, curve->p, ndigits); > + xycz_add(tx, ty, rx, ry, curve); > + vli_mod_mult_fast(z, z, tz, curve); > + } > + } > + vli_mod_inv(z, z, curve->p, ndigits); > + apply_z(rx, ry, z, curve); > +} > +EXPORT_SYMBOL(ecc_point_mult_shamir); > + > +/* > + * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5. > + * Whereas A.4.2 results in an integer in the interval [1, n-1], this function > + * ensures that the integer is in the range of [2, n-3]. We are slightly > + * stricter because of the currently used scalar multiplication algorithm. > + */ > +static int __ecc_is_key_valid(const struct ecc_curve *curve, > + const u64 *private_key, unsigned int ndigits) > +{ > + u64 one[ECC_MAX_DIGITS] = { 1, }; > + u64 res[ECC_MAX_DIGITS]; > + > + if (!private_key) > + return -EINVAL; > + > + if (curve->g.ndigits != ndigits) > + return -EINVAL; > + > + /* Make sure the private key is in the range [2, n-3]. */ > + if (vli_cmp(one, private_key, ndigits) != -1) > + return -EINVAL; > + vli_sub(res, curve->n, one, ndigits); > + vli_sub(res, res, one, ndigits); > + if (vli_cmp(res, private_key, ndigits) != 1) > + return -EINVAL; > + > + return 0; > +} > + > +int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, > + const u64 *private_key, unsigned int private_key_len) > +{ > + int nbytes; > + const struct ecc_curve *curve = ecc_get_curve(curve_id); > + > + nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; > + > + if (private_key_len != nbytes) > + return -EINVAL; > + > + return __ecc_is_key_valid(curve, private_key, ndigits); > +} > +EXPORT_SYMBOL(ecc_is_key_valid); > + > +int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, > + const u64 *private_key, u64 *public_key) > +{ > + int ret = 0; > + struct ecc_point *pk; > + const struct ecc_curve *curve = ecc_get_curve(curve_id); > + > + if (!private_key) { > + ret = -EINVAL; > + goto out; > + } > + > + pk = ecc_alloc_point(ndigits); > + if (!pk) { > + ret = -ENOMEM; > + goto out; > + } > + > + ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits); > + > + /* SP800-56A rev 3 5.6.2.1.3 key check */ > + if (ecc_is_pubkey_valid_full(curve, pk)) { > + ret = -EAGAIN; > + goto err_free_point; > + } > + > + ecc_swap_digits(pk->x, public_key, ndigits); > + ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); > + > +err_free_point: > + ecc_free_point(pk); > +out: > + return ret; > +} > +EXPORT_SYMBOL(ecc_make_pub_key); > + > +/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ > +int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, > + struct ecc_point *pk) > +{ > + u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; > + > + if (WARN_ON(pk->ndigits != curve->g.ndigits)) > + return -EINVAL; > + > + /* Check 1: Verify key is not the zero point. */ > + if (ecc_point_is_zero(pk)) > + return -EINVAL; > + > + /* Check 2: Verify key is in the range [1, p-1]. */ > + if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) > + return -EINVAL; > + if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) > + return -EINVAL; > + > + /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ > + vli_mod_square_fast(yy, pk->y, curve); /* y^2 */ > + vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */ > + vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */ > + vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */ > + vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ > + vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ > + if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ > + return -EINVAL; > + > + return 0; > +} > +EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); > + > +/* SP800-56A section 5.6.2.3.3 full verification */ > +int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, > + struct ecc_point *pk) > +{ > + struct ecc_point *nQ; > + > + /* Checks 1 through 3 */ > + int ret = ecc_is_pubkey_valid_partial(curve, pk); > + > + if (ret) > + return ret; > + > + /* Check 4: Verify that nQ is the zero point. */ > + nQ = ecc_alloc_point(pk->ndigits); > + if (!nQ) > + return -ENOMEM; > + > + ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits); > + if (!ecc_point_is_zero(nQ)) > + ret = -EINVAL; > + > + ecc_free_point(nQ); > + > + return ret; > +} > +EXPORT_SYMBOL(ecc_is_pubkey_valid_full); > + > +int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, > + const u64 *private_key, const u64 *public_key, > + u64 *secret) > +{ > + int ret = 0; > + struct ecc_point *product, *pk; > + u64 rand_z[ECC_MAX_DIGITS]; > + unsigned int nbytes; > + const struct ecc_curve *curve = ecc_get_curve(curve_id); > + > + if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) { > + ret = -EINVAL; > + goto out; > + } > + > + nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; > + > + get_random_bytes(rand_z, nbytes); > + > + pk = ecc_alloc_point(ndigits); > + if (!pk) { > + ret = -ENOMEM; > + goto out; > + } > + > + ecc_swap_digits(public_key, pk->x, ndigits); > + ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); > + ret = ecc_is_pubkey_valid_partial(curve, pk); > + if (ret) > + goto err_alloc_product; > + > + product = ecc_alloc_point(ndigits); > + if (!product) { > + ret = -ENOMEM; > + goto err_alloc_product; > + } > + > + ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits); > + > + if (ecc_point_is_zero(product)) { > + ret = -EFAULT; > + goto err_validity; > + } > + > + ecc_swap_digits(product->x, secret, ndigits); > + > +err_validity: > + memzero_explicit(rand_z, sizeof(rand_z)); > + ecc_free_point(product); > +err_alloc_product: > + ecc_free_point(pk); > +out: > + return ret; > +} > +EXPORT_SYMBOL(crypto_ecdh_shared_secret); > + > +MODULE_LICENSE("Dual BSD/GPL"); > diff --git a/crypto/ecc_curve_defs.h b/crypto/ecc_curve_defs.h > new file mode 100644 > index 0000000000..0ecade7d02 > --- /dev/null > +++ b/crypto/ecc_curve_defs.h > @@ -0,0 +1,155 @@ > +/* SPDX-License-Identifier: GPL-2.0 */ > +#ifndef _CRYTO_ECC_CURVE_DEFS_H > +#define _CRYTO_ECC_CURVE_DEFS_H > + > +/* NIST P-192: a = p - 3 */ > +static u64 nist_p192_g_x[] = { 0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull, > + 0x188DA80EB03090F6ull }; > +static u64 nist_p192_g_y[] = { 0x73F977A11E794811ull, 0x631011ED6B24CDD5ull, > + 0x07192B95FFC8DA78ull }; > +static u64 nist_p192_p[] = { 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFEull, > + 0xFFFFFFFFFFFFFFFFull }; > +static u64 nist_p192_n[] = { 0x146BC9B1B4D22831ull, 0xFFFFFFFF99DEF836ull, > + 0xFFFFFFFFFFFFFFFFull }; > +static u64 nist_p192_a[] = { 0xFFFFFFFFFFFFFFFCull, 0xFFFFFFFFFFFFFFFEull, > + 0xFFFFFFFFFFFFFFFFull }; > +static u64 nist_p192_b[] = { 0xFEB8DEECC146B9B1ull, 0x0FA7E9AB72243049ull, > + 0x64210519E59C80E7ull }; > +static struct ecc_curve nist_p192 = { > + .name = "nist_192", > + .nbits = 192, > + .g = { > + .x = nist_p192_g_x, > + .y = nist_p192_g_y, > + .ndigits = 3, > + }, > + .p = nist_p192_p, > + .n = nist_p192_n, > + .a = nist_p192_a, > + .b = nist_p192_b > +}; > + > +/* NIST P-256: a = p - 3 */ > +static u64 nist_p256_g_x[] = { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, > + 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }; > +static u64 nist_p256_g_y[] = { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, > + 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull }; > +static u64 nist_p256_p[] = { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, > + 0x0000000000000000ull, 0xFFFFFFFF00000001ull }; > +static u64 nist_p256_n[] = { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, > + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }; > +static u64 nist_p256_a[] = { 0xFFFFFFFFFFFFFFFCull, 0x00000000FFFFFFFFull, > + 0x0000000000000000ull, 0xFFFFFFFF00000001ull }; > +static u64 nist_p256_b[] = { 0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull, > + 0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull }; > +static struct ecc_curve nist_p256 = { > + .name = "nist_256", > + .nbits = 256, > + .g = { > + .x = nist_p256_g_x, > + .y = nist_p256_g_y, > + .ndigits = 4, > + }, > + .p = nist_p256_p, > + .n = nist_p256_n, > + .a = nist_p256_a, > + .b = nist_p256_b > +}; > + > +/* NIST P-384 */ > +static u64 nist_p384_g_x[] = { 0x3A545E3872760AB7ull, 0x5502F25DBF55296Cull, > + 0x59F741E082542A38ull, 0x6E1D3B628BA79B98ull, > + 0x8Eb1C71EF320AD74ull, 0xAA87CA22BE8B0537ull }; > +static u64 nist_p384_g_y[] = { 0x7A431D7C90EA0E5Full, 0x0A60B1CE1D7E819Dull, > + 0xE9DA3113B5F0B8C0ull, 0xF8F41DBD289A147Cull, > + 0x5D9E98BF9292DC29ull, 0x3617DE4A96262C6Full }; > +static u64 nist_p384_p[] = { 0x00000000FFFFFFFFull, 0xFFFFFFFF00000000ull, > + 0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull, > + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }; > +static u64 nist_p384_n[] = { 0xECEC196ACCC52973ull, 0x581A0DB248B0A77Aull, > + 0xC7634D81F4372DDFull, 0xFFFFFFFFFFFFFFFFull, > + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }; > +static u64 nist_p384_a[] = { 0x00000000FFFFFFFCull, 0xFFFFFFFF00000000ull, > + 0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull, > + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }; > +static u64 nist_p384_b[] = { 0x2a85c8edd3ec2aefull, 0xc656398d8a2ed19dull, > + 0x0314088f5013875aull, 0x181d9c6efe814112ull, > + 0x988e056be3f82d19ull, 0xb3312fa7e23ee7e4ull }; > +static struct ecc_curve nist_p384 = { > + .name = "nist_384", > + .nbits = 384, > + .g = { > + .x = nist_p384_g_x, > + .y = nist_p384_g_y, > + .ndigits = 6, > + }, > + .p = nist_p384_p, > + .n = nist_p384_n, > + .a = nist_p384_a, > + .b = nist_p384_b > +}; > + > +/* NIST P-521 */ > +static u64 nist_p521_g_x[] = { 0xf97e7e31c2e5bd66ull, 0x3348b3c1856a429bull, > + 0xfe1dc127a2ffa8deull, 0xa14b5e77efe75928ull, > + 0xf828af606b4d3dbaull, 0x9c648139053fb521ull, > + 0x9e3ecb662395b442ull, 0x858e06b70404e9cdull, > + 0xc6ull }; > +static u64 nist_p521_g_y[] = { 0x88be94769fd16650ull, 0x353c7086a272c240ull, > + 0xc550b9013fad0761ull, 0x97ee72995ef42640ull, > + 0x17afbd17273e662cull, 0x98f54449579b4468ull, > + 0x5c8a5fb42c7d1bd9ull, 0x39296a789a3bc004ull, > + 0x118ull }; > +static u64 nist_p521_p[] = { 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0x1ffull }; > +static u64 nist_p521_n[] = { 0xbb6fb71e91386409ull, 0x3bb5c9b8899c47aeull, > + 0x7fcc0148f709a5d0ull, 0x51868783bf2f966bull, > + 0xfffffffffffffffaull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0x1ffull }; > +static u64 nist_p521_a[] = { 0xfffffffffffffffcull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0xffffffffffffffffull, 0xffffffffffffffffull, > + 0x1ffull }; > +static u64 nist_p521_b[] = { 0xef451fd46b503f00ull, 0x3573df883d2c34f1ull, > + 0x1652c0bd3bb1bf07ull, 0x56193951ec7e937bull, > + 0xb8b489918ef109e1ull, 0xa2da725b99b315f3ull, > + 0x929a21a0b68540eeull, 0x953eb9618e1c9a1full, > + 0x051ull }; > +static struct ecc_curve nist_p521 = { > + .name = "nist_521", > + .nbits = 521, > + .g = { > + .x = nist_p521_g_x, > + .y = nist_p521_g_y, > + .ndigits = 9, > + }, > + .p = nist_p521_p, > + .n = nist_p521_n, > + .a = nist_p521_a, > + .b = nist_p521_b > +}; > + > +/* curve25519 */ > +static u64 curve25519_g_x[] = { 0x0000000000000009, 0x0000000000000000, > + 0x0000000000000000, 0x0000000000000000 }; > +static u64 curve25519_p[] = { 0xffffffffffffffed, 0xffffffffffffffff, > + 0xffffffffffffffff, 0x7fffffffffffffff }; > +static u64 curve25519_a[] = { 0x000000000001DB41, 0x0000000000000000, > + 0x0000000000000000, 0x0000000000000000 }; > +static const struct ecc_curve ecc_25519 = { > + .name = "curve25519", > + .nbits = 255, > + .g = { > + .x = curve25519_g_x, > + .ndigits = 4, > + }, > + .p = curve25519_p, > + .a = curve25519_a, > +}; > + > +#endif > diff --git a/include/crypto/ecc_curve.h b/include/crypto/ecc_curve.h > new file mode 100644 > index 0000000000..7d90c5e822 > --- /dev/null > +++ b/include/crypto/ecc_curve.h > @@ -0,0 +1,62 @@ > +/* SPDX-License-Identifier: GPL-2.0 */ > +/* Copyright (c) 2021 HiSilicon */ > + > +#ifndef _CRYTO_ECC_CURVE_H > +#define _CRYTO_ECC_CURVE_H > + > +#include <linux/types.h> > + > +/** > + * struct ecc_point - elliptic curve point in affine coordinates > + * > + * @x: X coordinate in vli form. > + * @y: Y coordinate in vli form. > + * @ndigits: Length of vlis in u64 qwords. > + */ > +struct ecc_point { > + u64 *x; > + u64 *y; > + u8 ndigits; > +}; > + > +/** > + * struct ecc_curve - definition of elliptic curve > + * > + * @name: Short name of the curve. > + * @nbits: The number of bits of a curve. > + * @g: Generator point of the curve. > + * @p: Prime number, if Barrett's reduction is used for this curve > + * pre-calculated value 'mu' is appended to the @p after ndigits. > + * Use of Barrett's reduction is heuristically determined in > + * vli_mmod_fast(). > + * @n: Order of the curve group. > + * @a: Curve parameter a. > + * @b: Curve parameter b. > + */ > +struct ecc_curve { > + char *name; > + u32 nbits; > + struct ecc_point g; > + u64 *p; > + u64 *n; > + u64 *a; > + u64 *b; > +}; > + > +/** > + * ecc_get_curve() - get elliptic curve; > + * @curve_id: Curves IDs: > + * defined in 'include/crypto/ecdh.h'; > + * > + * Returns curve if get curve succssful, NULL otherwise > + */ > +const struct ecc_curve *ecc_get_curve(unsigned int curve_id); > + > +/** > + * ecc_get_curve25519() - get curve25519 curve; > + * > + * Returns curve25519 > + */ > +const struct ecc_curve *ecc_get_curve25519(void); > + > +#endif > diff --git a/include/crypto/ecdh.h b/include/crypto/ecdh.h > new file mode 100644 > index 0000000000..9784ecdd2f > --- /dev/null > +++ b/include/crypto/ecdh.h > @@ -0,0 +1,83 @@ > +/* SPDX-License-Identifier: GPL-2.0-or-later */ > +/* > + * ECDH params to be used with kpp API > + * > + * Copyright (c) 2016, Intel Corporation > + * Authors: Salvatore Benedetto <salvatore.benedetto@xxxxxxxxx> > + */ > +#ifndef _CRYPTO_ECDH_ > +#define _CRYPTO_ECDH_ > + > +/** > + * DOC: ECDH Helper Functions > + * > + * To use ECDH with the KPP cipher API, the following data structure and > + * functions should be used. > + * > + * The ECC curves known to the ECDH implementation are specified in this > + * header file. > + * > + * To use ECDH with KPP, the following functions should be used to operate on > + * an ECDH private key. The packet private key that can be set with > + * the KPP API function call of crypto_kpp_set_secret. > + */ > + > +/* Curves IDs */ > +#define ECC_CURVE_NIST_P192 0x0001 > +#define ECC_CURVE_NIST_P256 0x0002 > +#define ECC_CURVE_NIST_P384 0x0003 > +#define ECC_CURVE_NIST_P521 0x0004 > + > +/** > + * struct ecdh - define an ECDH private key > + * > + * @key: Private ECDH key > + * @key_size: Size of the private ECDH key > + */ > +struct ecdh { > + char *key; > + unsigned short key_size; > +}; > + > +/** > + * crypto_ecdh_key_len() - Obtain the size of the private ECDH key > + * @params: private ECDH key > + * > + * This function returns the packet ECDH key size. A caller can use that > + * with the provided ECDH private key reference to obtain the required > + * memory size to hold a packet key. > + * > + * Return: size of the key in bytes > + */ > +unsigned int crypto_ecdh_key_len(const struct ecdh *params); > + > +/** > + * crypto_ecdh_encode_key() - encode the private key > + * @buf: Buffer allocated by the caller to hold the packet ECDH > + * private key. The buffer should be at least crypto_ecdh_key_len > + * bytes in size. > + * @len: Length of the packet private key buffer > + * @p: Buffer with the caller-specified private key > + * > + * The ECDH implementations operate on a packet representation of the private > + * key. > + * > + * Return: -EINVAL if buffer has insufficient size, 0 on success > + */ > +int crypto_ecdh_encode_key(char *buf, unsigned int len, const struct ecdh *p); > + > +/** > + * crypto_ecdh_decode_key() - decode a private key > + * @buf: Buffer holding a packet key that should be decoded > + * @len: Length of the packet private key buffer > + * @p: Buffer allocated by the caller that is filled with the > + * unpacked ECDH private key. > + * > + * The unpacking obtains the private key by pointing @p to the correct location > + * in @buf. Thus, both pointers refer to the same memory. > + * > + * Return: -EINVAL if buffer has insufficient size, 0 on success > + */ > +int crypto_ecdh_decode_key(const char *buf, unsigned int len, struct ecdh *p); > + > +#endif > diff --git a/include/crypto/internal/ecc.h b/include/crypto/internal/ecc.h > new file mode 100644 > index 0000000000..f191491cc0 > --- /dev/null > +++ b/include/crypto/internal/ecc.h > @@ -0,0 +1,278 @@ > +/* > + * Copyright (c) 2013, Kenneth MacKay > + * All rights reserved. > + * > + * Redistribution and use in source and binary forms, with or without > + * modification, are permitted provided that the following conditions are > + * met: > + * * Redistributions of source code must retain the above copyright > + * notice, this list of conditions and the following disclaimer. > + * * Redistributions in binary form must reproduce the above copyright > + * notice, this list of conditions and the following disclaimer in the > + * documentation and/or other materials provided with the distribution. > + * > + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS > + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT > + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR > + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT > + * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, > + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT > + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, > + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY > + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT > + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE > + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. > + */ > +#ifndef _CRYPTO_ECC_H > +#define _CRYPTO_ECC_H > + > +#include <crypto/ecc_curve.h> > +#include <asm/unaligned.h> > + > +/* One digit is u64 qword. */ > +#define ECC_CURVE_NIST_P192_DIGITS 3 > +#define ECC_CURVE_NIST_P256_DIGITS 4 > +#define ECC_CURVE_NIST_P384_DIGITS 6 > +#define ECC_CURVE_NIST_P521_DIGITS 9 > +#define ECC_MAX_DIGITS DIV_ROUND_UP(521, 64) /* NIST P521 */ > + > +#define ECC_DIGITS_TO_BYTES_SHIFT 3 > + > +#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT) > + > +#define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } > + > +/** > + * ecc_swap_digits() - Copy ndigits from big endian array to native array > + * @in: Input array > + * @out: Output array > + * @ndigits: Number of digits to copy > + */ > +static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits) > +{ > + const __be64 *src = (__force __be64 *)in; > + int i; > + > + for (i = 0; i < ndigits; i++) > + out[i] = get_unaligned_be64(&src[ndigits - 1 - i]); > +} > + > +/** > + * ecc_digits_from_bytes() - Create ndigits-sized digits array from byte array > + * @in: Input byte array > + * @nbytes Size of input byte array > + * @out Output digits array > + * @ndigits: Number of digits to create from byte array > + */ > +void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes, > + u64 *out, unsigned int ndigits); > + > +/** > + * ecc_is_key_valid() - Validate a given ECDH private key > + * > + * @curve_id: id representing the curve to use > + * @ndigits: curve's number of digits > + * @private_key: private key to be used for the given curve > + * @private_key_len: private key length > + * > + * Returns 0 if the key is acceptable, a negative value otherwise > + */ > +int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, > + const u64 *private_key, unsigned int private_key_len); > + > +/** > + * ecc_make_pub_key() - Compute an ECC public key > + * > + * @curve_id: id representing the curve to use > + * @ndigits: curve's number of digits > + * @private_key: pregenerated private key for the given curve > + * @public_key: buffer for storing the generated public key > + * > + * Returns 0 if the public key was generated successfully, a negative value > + * if an error occurred. > + */ > +int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits, > + const u64 *private_key, u64 *public_key); > + > +/** > + * crypto_ecdh_shared_secret() - Compute a shared secret > + * > + * @curve_id: id representing the curve to use > + * @ndigits: curve's number of digits > + * @private_key: private key of part A > + * @public_key: public key of counterpart B > + * @secret: buffer for storing the calculated shared secret > + * > + * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret > + * before using it for symmetric encryption or HMAC. > + * > + * Returns 0 if the shared secret was generated successfully, a negative value > + * if an error occurred. > + */ > +int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, > + const u64 *private_key, const u64 *public_key, > + u64 *secret); > + > +/** > + * ecc_is_pubkey_valid_partial() - Partial public key validation > + * > + * @curve: elliptic curve domain parameters > + * @pk: public key as a point > + * > + * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial > + * Public-Key Validation Routine. > + * > + * Note: There is no check that the public key is in the correct elliptic curve > + * subgroup. > + * > + * Return: 0 if validation is successful, -EINVAL if validation is failed. > + */ > +int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, > + struct ecc_point *pk); > + > +/** > + * ecc_is_pubkey_valid_full() - Full public key validation > + * > + * @curve: elliptic curve domain parameters > + * @pk: public key as a point > + * > + * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full > + * Public-Key Validation Routine. > + * > + * Return: 0 if validation is successful, -EINVAL if validation is failed. > + */ > +int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, > + struct ecc_point *pk); > + > +/** > + * vli_is_zero() - Determine is vli is zero > + * > + * @vli: vli to check. > + * @ndigits: length of the @vli > + */ > +bool vli_is_zero(const u64 *vli, unsigned int ndigits); > + > +/** > + * vli_cmp() - compare left and right vlis > + * > + * @left: vli > + * @right: vli > + * @ndigits: length of both vlis > + * > + * Returns sign of @left - @right, i.e. -1 if @left < @right, > + * 0 if @left == @right, 1 if @left > @right. > + */ > +int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); > + > +/** > + * vli_sub() - Subtracts right from left > + * > + * @result: where to write result > + * @left: vli > + * @right vli > + * @ndigits: length of all vlis > + * > + * Note: can modify in-place. > + * > + * Return: carry bit. > + */ > +u64 vli_sub(u64 *result, const u64 *left, const u64 *right, > + unsigned int ndigits); > + > +/** > + * vli_from_be64() - Load vli from big-endian u64 array > + * > + * @dest: destination vli > + * @src: source array of u64 BE values > + * @ndigits: length of both vli and array > + */ > +void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); > + > +/** > + * vli_from_le64() - Load vli from little-endian u64 array > + * > + * @dest: destination vli > + * @src: source array of u64 LE values > + * @ndigits: length of both vli and array > + */ > +void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); > + > +/** > + * vli_mod_inv() - Modular inversion > + * > + * @result: where to write vli number > + * @input: vli value to operate on > + * @mod: modulus > + * @ndigits: length of all vlis > + */ > +void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, > + unsigned int ndigits); > + > +/** > + * vli_mod_mult_slow() - Modular multiplication > + * > + * @result: where to write result value > + * @left: vli number to multiply with @right > + * @right: vli number to multiply with @left > + * @mod: modulus > + * @ndigits: length of all vlis > + * > + * Note: Assumes that mod is big enough curve order. > + */ > +void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, > + const u64 *mod, unsigned int ndigits); > + > +/** > + * vli_num_bits() - Counts the number of bits required for vli. > + * > + * @vli: vli to check. > + * @ndigits: Length of the @vli > + * > + * Return: The number of bits required to represent @vli. > + */ > +unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits); > + > +/** > + * ecc_aloc_point() - Allocate ECC point. > + * > + * @ndigits: Length of vlis in u64 qwords. > + * > + * Return: Pointer to the allocated point or NULL if allocation failed. > + */ > +struct ecc_point *ecc_alloc_point(unsigned int ndigits); > + > +/** > + * ecc_free_point() - Free ECC point. > + * > + * @p: The point to free. > + */ > +void ecc_free_point(struct ecc_point *p); > + > +/** > + * ecc_point_is_zero() - Check if point is zero. > + * > + * @p: Point to check for zero. > + * > + * Return: true if point is the point at infinity, false otherwise. > + */ > +bool ecc_point_is_zero(const struct ecc_point *point); > + > +/** > + * ecc_point_mult_shamir() - Add two points multiplied by scalars > + * > + * @result: resulting point > + * @x: scalar to multiply with @p > + * @p: point to multiply with @x > + * @y: scalar to multiply with @q > + * @q: point to multiply with @y > + * @curve: curve > + * > + * Returns result = x * p + x * q over the curve. > + * This works faster than two multiplications and addition. > + */ > +void ecc_point_mult_shamir(const struct ecc_point *result, > + const u64 *x, const struct ecc_point *p, > + const u64 *y, const struct ecc_point *q, > + const struct ecc_curve *curve); > + > +#endif -- Pengutronix e.K. | | Steuerwalder Str. 21 | http://www.pengutronix.de/ | 31137 Hildesheim, Germany | Phone: +49-5121-206917-0 | Amtsgericht Hildesheim, HRA 2686 | Fax: +49-5121-206917-5555 |