The denali NAND driver is in an hopeless outdated state, it can't even check the ECC data. Throw in the denali driver from Linux-5.9. Signed-off-by: Sascha Hauer <s.hauer@xxxxxxxxxxxxxx> --- drivers/mtd/nand/denali.h | 583 +++----- drivers/mtd/nand/nand_denali.c | 2231 +++++++++++++---------------- drivers/mtd/nand/nand_denali_dt.c | 74 +- 3 files changed, 1321 insertions(+), 1567 deletions(-) diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h index 699e6ec6b4..f9c209d58d 100644 --- a/drivers/mtd/nand/denali.h +++ b/drivers/mtd/nand/denali.h @@ -1,500 +1,393 @@ +/* SPDX-License-Identifier: GPL-2.0 */ /* * NAND Flash Controller Device Driver * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - * */ #ifndef __DENALI_H__ #define __DENALI_H__ -#include <linux/mtd/nand.h> +#include <linux/list.h> #include <linux/mtd/rawnand.h> -#include <linux/spinlock.h> +#include <linux/types.h> #define DEVICE_RESET 0x0 -#define DEVICE_RESET__BANK0 0x0001 -#define DEVICE_RESET__BANK1 0x0002 -#define DEVICE_RESET__BANK2 0x0004 -#define DEVICE_RESET__BANK3 0x0008 +#define DEVICE_RESET__BANK(bank) BIT(bank) #define TRANSFER_SPARE_REG 0x10 -#define TRANSFER_SPARE_REG__FLAG 0x0001 +#define TRANSFER_SPARE_REG__FLAG BIT(0) #define LOAD_WAIT_CNT 0x20 -#define LOAD_WAIT_CNT__VALUE 0xffff +#define LOAD_WAIT_CNT__VALUE GENMASK(15, 0) #define PROGRAM_WAIT_CNT 0x30 -#define PROGRAM_WAIT_CNT__VALUE 0xffff +#define PROGRAM_WAIT_CNT__VALUE GENMASK(15, 0) #define ERASE_WAIT_CNT 0x40 -#define ERASE_WAIT_CNT__VALUE 0xffff +#define ERASE_WAIT_CNT__VALUE GENMASK(15, 0) #define INT_MON_CYCCNT 0x50 -#define INT_MON_CYCCNT__VALUE 0xffff +#define INT_MON_CYCCNT__VALUE GENMASK(15, 0) #define RB_PIN_ENABLED 0x60 -#define RB_PIN_ENABLED__BANK0 0x0001 -#define RB_PIN_ENABLED__BANK1 0x0002 -#define RB_PIN_ENABLED__BANK2 0x0004 -#define RB_PIN_ENABLED__BANK3 0x0008 +#define RB_PIN_ENABLED__BANK(bank) BIT(bank) #define MULTIPLANE_OPERATION 0x70 -#define MULTIPLANE_OPERATION__FLAG 0x0001 +#define MULTIPLANE_OPERATION__FLAG BIT(0) #define MULTIPLANE_READ_ENABLE 0x80 -#define MULTIPLANE_READ_ENABLE__FLAG 0x0001 +#define MULTIPLANE_READ_ENABLE__FLAG BIT(0) #define COPYBACK_DISABLE 0x90 -#define COPYBACK_DISABLE__FLAG 0x0001 +#define COPYBACK_DISABLE__FLAG BIT(0) #define CACHE_WRITE_ENABLE 0xa0 -#define CACHE_WRITE_ENABLE__FLAG 0x0001 +#define CACHE_WRITE_ENABLE__FLAG BIT(0) #define CACHE_READ_ENABLE 0xb0 -#define CACHE_READ_ENABLE__FLAG 0x0001 +#define CACHE_READ_ENABLE__FLAG BIT(0) #define PREFETCH_MODE 0xc0 -#define PREFETCH_MODE__PREFETCH_EN 0x0001 -#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0 +#define PREFETCH_MODE__PREFETCH_EN BIT(0) +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH GENMASK(15, 4) #define CHIP_ENABLE_DONT_CARE 0xd0 -#define CHIP_EN_DONT_CARE__FLAG 0x01 +#define CHIP_EN_DONT_CARE__FLAG BIT(0) #define ECC_ENABLE 0xe0 -#define ECC_ENABLE__FLAG 0x0001 +#define ECC_ENABLE__FLAG BIT(0) #define GLOBAL_INT_ENABLE 0xf0 -#define GLOBAL_INT_EN_FLAG 0x01 +#define GLOBAL_INT_EN_FLAG BIT(0) -#define WE_2_RE 0x100 -#define WE_2_RE__VALUE 0x003f +#define TWHR2_AND_WE_2_RE 0x100 +#define TWHR2_AND_WE_2_RE__WE_2_RE GENMASK(5, 0) +#define TWHR2_AND_WE_2_RE__TWHR2 GENMASK(13, 8) -#define ADDR_2_DATA 0x110 -#define ADDR_2_DATA__VALUE 0x003f +#define TCWAW_AND_ADDR_2_DATA 0x110 +/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */ +#define TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA GENMASK(6, 0) +#define TCWAW_AND_ADDR_2_DATA__TCWAW GENMASK(13, 8) #define RE_2_WE 0x120 -#define RE_2_WE__VALUE 0x003f +#define RE_2_WE__VALUE GENMASK(5, 0) #define ACC_CLKS 0x130 -#define ACC_CLKS__VALUE 0x000f +#define ACC_CLKS__VALUE GENMASK(3, 0) #define NUMBER_OF_PLANES 0x140 -#define NUMBER_OF_PLANES__VALUE 0x0007 +#define NUMBER_OF_PLANES__VALUE GENMASK(2, 0) #define PAGES_PER_BLOCK 0x150 -#define PAGES_PER_BLOCK__VALUE 0xffff +#define PAGES_PER_BLOCK__VALUE GENMASK(15, 0) #define DEVICE_WIDTH 0x160 -#define DEVICE_WIDTH__VALUE 0x0003 +#define DEVICE_WIDTH__VALUE GENMASK(1, 0) #define DEVICE_MAIN_AREA_SIZE 0x170 -#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff +#define DEVICE_MAIN_AREA_SIZE__VALUE GENMASK(15, 0) #define DEVICE_SPARE_AREA_SIZE 0x180 -#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff +#define DEVICE_SPARE_AREA_SIZE__VALUE GENMASK(15, 0) #define TWO_ROW_ADDR_CYCLES 0x190 -#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001 +#define TWO_ROW_ADDR_CYCLES__FLAG BIT(0) #define MULTIPLANE_ADDR_RESTRICT 0x1a0 -#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001 +#define MULTIPLANE_ADDR_RESTRICT__FLAG BIT(0) #define ECC_CORRECTION 0x1b0 -#define ECC_CORRECTION__VALUE 0x001f +#define ECC_CORRECTION__VALUE GENMASK(4, 0) +#define ECC_CORRECTION__ERASE_THRESHOLD GENMASK(31, 16) #define READ_MODE 0x1c0 -#define READ_MODE__VALUE 0x000f +#define READ_MODE__VALUE GENMASK(3, 0) #define WRITE_MODE 0x1d0 -#define WRITE_MODE__VALUE 0x000f +#define WRITE_MODE__VALUE GENMASK(3, 0) #define COPYBACK_MODE 0x1e0 -#define COPYBACK_MODE__VALUE 0x000f +#define COPYBACK_MODE__VALUE GENMASK(3, 0) #define RDWR_EN_LO_CNT 0x1f0 -#define RDWR_EN_LO_CNT__VALUE 0x001f +#define RDWR_EN_LO_CNT__VALUE GENMASK(4, 0) #define RDWR_EN_HI_CNT 0x200 -#define RDWR_EN_HI_CNT__VALUE 0x001f +#define RDWR_EN_HI_CNT__VALUE GENMASK(4, 0) #define MAX_RD_DELAY 0x210 -#define MAX_RD_DELAY__VALUE 0x000f +#define MAX_RD_DELAY__VALUE GENMASK(3, 0) #define CS_SETUP_CNT 0x220 -#define CS_SETUP_CNT__VALUE 0x001f +#define CS_SETUP_CNT__VALUE GENMASK(4, 0) +#define CS_SETUP_CNT__TWB GENMASK(17, 12) #define SPARE_AREA_SKIP_BYTES 0x230 -#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f +#define SPARE_AREA_SKIP_BYTES__VALUE GENMASK(5, 0) #define SPARE_AREA_MARKER 0x240 -#define SPARE_AREA_MARKER__VALUE 0xffff +#define SPARE_AREA_MARKER__VALUE GENMASK(15, 0) #define DEVICES_CONNECTED 0x250 -#define DEVICES_CONNECTED__VALUE 0x0007 +#define DEVICES_CONNECTED__VALUE GENMASK(2, 0) #define DIE_MASK 0x260 -#define DIE_MASK__VALUE 0x00ff +#define DIE_MASK__VALUE GENMASK(7, 0) #define FIRST_BLOCK_OF_NEXT_PLANE 0x270 -#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE GENMASK(15, 0) #define WRITE_PROTECT 0x280 -#define WRITE_PROTECT__FLAG 0x0001 +#define WRITE_PROTECT__FLAG BIT(0) #define RE_2_RE 0x290 -#define RE_2_RE__VALUE 0x003f +#define RE_2_RE__VALUE GENMASK(5, 0) #define MANUFACTURER_ID 0x300 -#define MANUFACTURER_ID__VALUE 0x00ff +#define MANUFACTURER_ID__VALUE GENMASK(7, 0) #define DEVICE_ID 0x310 -#define DEVICE_ID__VALUE 0x00ff +#define DEVICE_ID__VALUE GENMASK(7, 0) #define DEVICE_PARAM_0 0x320 -#define DEVICE_PARAM_0__VALUE 0x00ff +#define DEVICE_PARAM_0__VALUE GENMASK(7, 0) #define DEVICE_PARAM_1 0x330 -#define DEVICE_PARAM_1__VALUE 0x00ff +#define DEVICE_PARAM_1__VALUE GENMASK(7, 0) #define DEVICE_PARAM_2 0x340 -#define DEVICE_PARAM_2__VALUE 0x00ff +#define DEVICE_PARAM_2__VALUE GENMASK(7, 0) #define LOGICAL_PAGE_DATA_SIZE 0x350 -#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff +#define LOGICAL_PAGE_DATA_SIZE__VALUE GENMASK(15, 0) #define LOGICAL_PAGE_SPARE_SIZE 0x360 -#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff +#define LOGICAL_PAGE_SPARE_SIZE__VALUE GENMASK(15, 0) #define REVISION 0x370 -#define REVISION__VALUE 0xffff +#define REVISION__VALUE GENMASK(15, 0) #define ONFI_DEVICE_FEATURES 0x380 -#define ONFI_DEVICE_FEATURES__VALUE 0x003f +#define ONFI_DEVICE_FEATURES__VALUE GENMASK(5, 0) #define ONFI_OPTIONAL_COMMANDS 0x390 -#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f +#define ONFI_OPTIONAL_COMMANDS__VALUE GENMASK(5, 0) #define ONFI_TIMING_MODE 0x3a0 -#define ONFI_TIMING_MODE__VALUE 0x003f +#define ONFI_TIMING_MODE__VALUE GENMASK(5, 0) #define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 -#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE GENMASK(5, 0) #define ONFI_DEVICE_NO_OF_LUNS 0x3c0 -#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff -#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100 +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS GENMASK(7, 0) +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE BIT(8) #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 -#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE GENMASK(15, 0) #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 -#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff - -#define FEATURES 0x3f0 -#define FEATURES__N_BANKS 0x0003 -#define FEATURES__ECC_MAX_ERR 0x003c -#define FEATURES__DMA 0x0040 -#define FEATURES__CMD_DMA 0x0080 -#define FEATURES__PARTITION 0x0100 -#define FEATURES__XDMA_SIDEBAND 0x0200 -#define FEATURES__GPREG 0x0400 -#define FEATURES__INDEX_ADDR 0x0800 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE GENMASK(15, 0) + +#define FEATURES 0x3f0 +#define FEATURES__N_BANKS GENMASK(1, 0) +#define FEATURES__ECC_MAX_ERR GENMASK(5, 2) +#define FEATURES__DMA BIT(6) +#define FEATURES__CMD_DMA BIT(7) +#define FEATURES__PARTITION BIT(8) +#define FEATURES__XDMA_SIDEBAND BIT(9) +#define FEATURES__GPREG BIT(10) +#define FEATURES__INDEX_ADDR BIT(11) #define TRANSFER_MODE 0x400 -#define TRANSFER_MODE__VALUE 0x0003 - -#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50)) -#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50)) - -/* - * Some versions of the IP have the ECC fixup handled in hardware. In this - * configuration we only get interrupted when the error is uncorrectable. - * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the - * old IP. - * taken from patch by Jamie Iles <jamie at jamieiles.com> - * support hardware with internal ECC fixup - */ -#define INTR_STATUS__ECC_UNCOR_ERR 0x0001 - -#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001 -#define INTR_STATUS__ECC_ERR 0x0002 -#define INTR_STATUS__DMA_CMD_COMP 0x0004 -#define INTR_STATUS__TIME_OUT 0x0008 -#define INTR_STATUS__PROGRAM_FAIL 0x0010 -#define INTR_STATUS__ERASE_FAIL 0x0020 -#define INTR_STATUS__LOAD_COMP 0x0040 -#define INTR_STATUS__PROGRAM_COMP 0x0080 -#define INTR_STATUS__ERASE_COMP 0x0100 -#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_STATUS__LOCKED_BLK 0x0400 -#define INTR_STATUS__UNSUP_CMD 0x0800 -#define INTR_STATUS__INT_ACT 0x1000 -#define INTR_STATUS__RST_COMP 0x2000 -#define INTR_STATUS__PIPE_CMD_ERR 0x4000 -#define INTR_STATUS__PAGE_XFER_INC 0x8000 - -#define INTR_EN__ECC_TRANSACTION_DONE 0x0001 -#define INTR_EN__ECC_ERR 0x0002 -#define INTR_EN__DMA_CMD_COMP 0x0004 -#define INTR_EN__TIME_OUT 0x0008 -#define INTR_EN__PROGRAM_FAIL 0x0010 -#define INTR_EN__ERASE_FAIL 0x0020 -#define INTR_EN__LOAD_COMP 0x0040 -#define INTR_EN__PROGRAM_COMP 0x0080 -#define INTR_EN__ERASE_COMP 0x0100 -#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_EN__LOCKED_BLK 0x0400 -#define INTR_EN__UNSUP_CMD 0x0800 -#define INTR_EN__INT_ACT 0x1000 -#define INTR_EN__RST_COMP 0x2000 -#define INTR_EN__PIPE_CMD_ERR 0x4000 -#define INTR_EN__PAGE_XFER_INC 0x8000 - -#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50)) -#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50)) -#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50)) - -#define DATA_INTR 0x550 -#define DATA_INTR__WRITE_SPACE_AV 0x0001 -#define DATA_INTR__READ_DATA_AV 0x0002 - -#define DATA_INTR_EN 0x560 -#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 -#define DATA_INTR_EN__READ_DATA_AV 0x0002 - -#define GPREG_0 0x570 -#define GPREG_0__VALUE 0xffff - -#define GPREG_1 0x580 -#define GPREG_1__VALUE 0xffff - -#define GPREG_2 0x590 -#define GPREG_2__VALUE 0xffff - -#define GPREG_3 0x5a0 -#define GPREG_3__VALUE 0xffff +#define TRANSFER_MODE__VALUE GENMASK(1, 0) + +#define INTR_STATUS(bank) (0x410 + (bank) * 0x50) +#define INTR_EN(bank) (0x420 + (bank) * 0x50) +/* bit[1:0] is used differently depending on IP version */ +#define INTR__ECC_UNCOR_ERR BIT(0) /* new IP */ +#define INTR__ECC_TRANSACTION_DONE BIT(0) /* old IP */ +#define INTR__ECC_ERR BIT(1) /* old IP */ +#define INTR__DMA_CMD_COMP BIT(2) +#define INTR__TIME_OUT BIT(3) +#define INTR__PROGRAM_FAIL BIT(4) +#define INTR__ERASE_FAIL BIT(5) +#define INTR__LOAD_COMP BIT(6) +#define INTR__PROGRAM_COMP BIT(7) +#define INTR__ERASE_COMP BIT(8) +#define INTR__PIPE_CPYBCK_CMD_COMP BIT(9) +#define INTR__LOCKED_BLK BIT(10) +#define INTR__UNSUP_CMD BIT(11) +#define INTR__INT_ACT BIT(12) +#define INTR__RST_COMP BIT(13) +#define INTR__PIPE_CMD_ERR BIT(14) +#define INTR__PAGE_XFER_INC BIT(15) +#define INTR__ERASED_PAGE BIT(16) + +#define PAGE_CNT(bank) (0x430 + (bank) * 0x50) +#define ERR_PAGE_ADDR(bank) (0x440 + (bank) * 0x50) +#define ERR_BLOCK_ADDR(bank) (0x450 + (bank) * 0x50) #define ECC_THRESHOLD 0x600 -#define ECC_THRESHOLD__VALUE 0x03ff +#define ECC_THRESHOLD__VALUE GENMASK(9, 0) #define ECC_ERROR_BLOCK_ADDRESS 0x610 -#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff +#define ECC_ERROR_BLOCK_ADDRESS__VALUE GENMASK(15, 0) #define ECC_ERROR_PAGE_ADDRESS 0x620 -#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff -#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000 +#define ECC_ERROR_PAGE_ADDRESS__VALUE GENMASK(11, 0) +#define ECC_ERROR_PAGE_ADDRESS__BANK GENMASK(15, 12) #define ECC_ERROR_ADDRESS 0x630 -#define ECC_ERROR_ADDRESS__OFFSET 0x0fff -#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000 +#define ECC_ERROR_ADDRESS__OFFSET GENMASK(11, 0) +#define ECC_ERROR_ADDRESS__SECTOR GENMASK(15, 12) #define ERR_CORRECTION_INFO 0x640 -#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff -#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00 -#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 -#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000 +#define ERR_CORRECTION_INFO__BYTE GENMASK(7, 0) +#define ERR_CORRECTION_INFO__DEVICE GENMASK(11, 8) +#define ERR_CORRECTION_INFO__UNCOR BIT(14) +#define ERR_CORRECTION_INFO__LAST_ERR BIT(15) + +#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10) +#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8) +#define ECC_COR_INFO__MAX_ERRORS GENMASK(6, 0) +#define ECC_COR_INFO__UNCOR_ERR BIT(7) + +#define CFG_DATA_BLOCK_SIZE 0x6b0 + +#define CFG_LAST_DATA_BLOCK_SIZE 0x6c0 + +#define CFG_NUM_DATA_BLOCKS 0x6d0 + +#define CFG_META_DATA_SIZE 0x6e0 #define DMA_ENABLE 0x700 -#define DMA_ENABLE__FLAG 0x0001 +#define DMA_ENABLE__FLAG BIT(0) #define IGNORE_ECC_DONE 0x710 -#define IGNORE_ECC_DONE__FLAG 0x0001 +#define IGNORE_ECC_DONE__FLAG BIT(0) #define DMA_INTR 0x720 -#define DMA_INTR__TARGET_ERROR 0x0001 -#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 -#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 -#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 -#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 -#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 - #define DMA_INTR_EN 0x730 -#define DMA_INTR_EN__TARGET_ERROR 0x0001 -#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 -#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 -#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 -#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 -#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020 +#define DMA_INTR__TARGET_ERROR BIT(0) +#define DMA_INTR__DESC_COMP_CHANNEL0 BIT(1) +#define DMA_INTR__DESC_COMP_CHANNEL1 BIT(2) +#define DMA_INTR__DESC_COMP_CHANNEL2 BIT(3) +#define DMA_INTR__DESC_COMP_CHANNEL3 BIT(4) +#define DMA_INTR__MEMCOPY_DESC_COMP BIT(5) #define TARGET_ERR_ADDR_LO 0x740 -#define TARGET_ERR_ADDR_LO__VALUE 0xffff +#define TARGET_ERR_ADDR_LO__VALUE GENMASK(15, 0) #define TARGET_ERR_ADDR_HI 0x750 -#define TARGET_ERR_ADDR_HI__VALUE 0xffff +#define TARGET_ERR_ADDR_HI__VALUE GENMASK(15, 0) #define CHNL_ACTIVE 0x760 -#define CHNL_ACTIVE__CHANNEL0 0x0001 -#define CHNL_ACTIVE__CHANNEL1 0x0002 -#define CHNL_ACTIVE__CHANNEL2 0x0004 -#define CHNL_ACTIVE__CHANNEL3 0x0008 - -#define FLASH_BURST_LENGTH 0x770 -#define CHIP_INTERLEAVE_ENABLE_AND_ALLOW_INT_READS 0X780 -#define NO_OF_BLOCKS_PER_LUN 0X790 -#define LUN_STATUS_CMD 0X7A0 - -#define ACTIVE_SRC_ID 0x800 -#define ACTIVE_SRC_ID__VALUE 0x00ff - -#define PTN_INTR 0x810 -#define PTN_INTR__CONFIG_ERROR 0x0001 -#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 -#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 -#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 -#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 -#define PTN_INTR__REG_ACCESS_ERROR 0x0020 - -#define PTN_INTR_EN 0x820 -#define PTN_INTR_EN__CONFIG_ERROR 0x0001 -#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 -#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 -#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 -#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 -#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 - -#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40)) -#define PERM_SRC_ID__SRCID 0x00ff -#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID__READ_ACTIVE 0x4000 -#define PERM_SRC_ID__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40)) -#define MIN_BLK_ADDR__VALUE 0xffff - -#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40)) -#define MAX_BLK_ADDR__VALUE 0xffff - -#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40)) -#define MIN_MAX_BANK__MIN_VALUE 0x0003 -#define MIN_MAX_BANK__MAX_VALUE 0x000c - - -/* ffsdefs.h */ -#define CLEAR 0 /*use this to clear a field instead of "fail"*/ -#define SET 1 /*use this to set a field instead of "pass"*/ -#define FAIL 1 /*failed flag*/ -#define PASS 0 /*success flag*/ -#define ERR -1 /*error flag*/ - -/* lld.h */ -#define GOOD_BLOCK 0 -#define DEFECTIVE_BLOCK 1 -#define READ_ERROR 2 - -#define CLK_X 5 -#define CLK_MULTI 4 - -/* spectraswconfig.h */ -#define CMD_DMA 0 - -#define SPECTRA_PARTITION_ID 0 -/**** Block Table and Reserved Block Parameters *****/ -#define SPECTRA_START_BLOCK 3 -#define NUM_FREE_BLOCKS_GATE 30 - -/* KBV - Updated to LNW scratch register address */ -#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR -#define SCRATCH_REG_SIZE 64 - -#define GLOB_HWCTL_DEFAULT_BLKS 2048 - -#define SUPPORT_15BITECC 1 -#define SUPPORT_8BITECC 1 - -#define CUSTOM_CONF_PARAMS 0 - -#define ONFI_BLOOM_TIME 1 -#define MODE5_WORKAROUND 0 - - -#define MODE_00 0x00000000 -#define MODE_01 0x04000000 -#define MODE_10 0x08000000 -#define MODE_11 0x0C000000 - - -#define DATA_TRANSFER_MODE 0 -#define PROTECTION_PER_BLOCK 1 -#define LOAD_WAIT_COUNT 2 -#define PROGRAM_WAIT_COUNT 3 -#define ERASE_WAIT_COUNT 4 -#define INT_MONITOR_CYCLE_COUNT 5 -#define READ_BUSY_PIN_ENABLED 6 -#define MULTIPLANE_OPERATION_SUPPORT 7 -#define PRE_FETCH_MODE 8 -#define CE_DONT_CARE_SUPPORT 9 -#define COPYBACK_SUPPORT 10 -#define CACHE_WRITE_SUPPORT 11 -#define CACHE_READ_SUPPORT 12 -#define NUM_PAGES_IN_BLOCK 13 -#define ECC_ENABLE_SELECT 14 -#define WRITE_ENABLE_2_READ_ENABLE 15 -#define ADDRESS_2_DATA 16 -#define READ_ENABLE_2_WRITE_ENABLE 17 -#define TWO_ROW_ADDRESS_CYCLES 18 -#define MULTIPLANE_ADDRESS_RESTRICT 19 -#define ACC_CLOCKS 20 -#define READ_WRITE_ENABLE_LOW_COUNT 21 -#define READ_WRITE_ENABLE_HIGH_COUNT 22 - -#define ECC_SECTOR_SIZE 512 - -struct nand_buf { - int head; - int tail; - uint8_t *buf; - dma_addr_t dma_buf; +#define CHNL_ACTIVE__CHANNEL0 BIT(0) +#define CHNL_ACTIVE__CHANNEL1 BIT(1) +#define CHNL_ACTIVE__CHANNEL2 BIT(2) +#define CHNL_ACTIVE__CHANNEL3 BIT(3) + +/** + * struct denali_chip_sel - per-CS data of Denali NAND + * + * @bank: bank id of the controller this CS is connected to + * @hwhr2_and_we_2_re: value of timing register HWHR2_AND_WE_2_RE + * @tcwaw_and_addr_2_data: value of timing register TCWAW_AND_ADDR_2_DATA + * @re_2_we: value of timing register RE_2_WE + * @acc_clks: value of timing register ACC_CLKS + * @rdwr_en_lo_cnt: value of timing register RDWR_EN_LO_CNT + * @rdwr_en_hi_cnt: value of timing register RDWR_EN_HI_CNT + * @cs_setup_cnt: value of timing register CS_SETUP_CNT + * @re_2_re: value of timing register RE_2_RE + */ +struct denali_chip_sel { + int bank; + u32 hwhr2_and_we_2_re; + u32 tcwaw_and_addr_2_data; + u32 re_2_we; + u32 acc_clks; + u32 rdwr_en_lo_cnt; + u32 rdwr_en_hi_cnt; + u32 cs_setup_cnt; + u32 re_2_re; }; -#define INTEL_CE4100 1 -#define INTEL_MRST 2 -#define DT 3 +/** + * struct denali_chip - per-chip data of Denali NAND + * + * @chip: base NAND chip structure + * @node: node to be used to associate this chip with the controller + * @nsels: the number of CS lines of this chip + * @sels: the array of per-cs data + */ +struct denali_chip { + struct nand_chip chip; + struct list_head node; + unsigned int nsels; + struct denali_chip_sel sels[]; +}; -struct denali_nand_info { - struct nand_chip nand; - int flash_bank; /* currently selected chip */ - int status; - int platform; - struct nand_buf buf; +/** + * struct denali_controller - Denali NAND controller data + * + * @controller: base NAND controller structure + * @dev: device + * @chips: the list of chips attached to this controller + * @clk_rate: frequency of core clock + * @clk_x_rate: frequency of bus interface clock + * @reg: base of Register Interface + * @host: base of Host Data/Command interface + * @irq: interrupt number + * @irq_mask: interrupt bits the controller is waiting for + * @irq_status: interrupt bits of events that have happened + * @irq_lock: lock to protect @irq_mask and @irq_status + * @dma_avail: set if DMA engine is available + * @devs_per_cs: number of devices connected in parallel + * @oob_skip_bytes: number of bytes in OOB skipped by the ECC engine + * @active_bank: active bank id + * @nbanks: the number of banks supported by this controller + * @revision: IP revision + * @caps: controller capabilities that cannot be detected run-time + * @ecc_caps: ECC engine capabilities + * @host_read: callback for read access of Host Data/Command Interface + * @host_write: callback for write access of Host Data/Command Interface + * @setup_dma: callback for setup of the Data DMA + */ +struct denali_controller { + struct nand_controller controller; struct device_d *dev; - int total_used_banks; - uint32_t block; /* stored for future use */ - uint32_t page; - void __iomem *flash_reg; /* Mapped io reg base address */ - void __iomem *flash_mem; /* Mapped io reg base address */ - - /* elements used by ISR */ - //struct completion complete; - spinlock_t irq_lock; - uint32_t irq_status; - int irq_debug_array[32]; - int idx; + struct list_head chips; + unsigned long clk_rate; + unsigned long clk_x_rate; + void __iomem *reg; + void __iomem *host; int irq; - - uint32_t devnum; /* represent how many nands connected */ - uint32_t fwblks; /* represent how many blocks FW used */ - uint32_t totalblks; - uint32_t blksperchip; - uint32_t bbtskipbytes; - uint32_t max_banks; - bool have_hw_ecc_fixup; + u32 irq_mask; + u32 irq_status; + spinlock_t irq_lock; + bool dma_avail; + int devs_per_cs; + int oob_skip_bytes; + int active_bank; + int nbanks; + unsigned int revision; + unsigned int caps; + const struct nand_ecc_caps *ecc_caps; + u32 (*host_read)(struct denali_controller *denali, u32 addr); + void (*host_write)(struct denali_controller *denali, u32 addr, + u32 data); + void (*setup_dma)(struct denali_controller *denali, dma_addr_t dma_addr, + int page, bool write); }; -extern int denali_init(struct denali_nand_info *denali); -extern void denali_remove(struct denali_nand_info *denali); +#define DENALI_CAP_HW_ECC_FIXUP BIT(0) +#define DENALI_CAP_DMA_64BIT BIT(1) + +int denali_calc_ecc_bytes(int step_size, int strength); +int denali_chip_init(struct denali_controller *denali, + struct denali_chip *dchip); +int denali_init(struct denali_controller *denali); +void denali_remove(struct denali_controller *denali); #endif /* __DENALI_H__ */ diff --git a/drivers/mtd/nand/nand_denali.c b/drivers/mtd/nand/nand_denali.c index 49028bf082..d7a9be2c69 100644 --- a/drivers/mtd/nand/nand_denali.c +++ b/drivers/mtd/nand/nand_denali.c @@ -1,22 +1,11 @@ +// SPDX-License-Identifier: GPL-2.0 /* * NAND Flash Controller Device Driver * Copyright © 2009-2010, Intel Corporation and its suppliers. * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - * + * Copyright (c) 2017-2019 Socionext Inc. + * Reworked by Masahiro Yamada <yamada.masahiro@xxxxxxxxxxxxx> */ - #include <common.h> #include <dma.h> #include <driver.h> @@ -25,6 +14,8 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/nand.h> +#include <linux/spinlock.h> +#include <linux/bitfield.h> #include <io.h> #include <clock.h> #include <of_mtd.h> @@ -32,1509 +23,1321 @@ #include <asm/io.h> #include "denali.h" -#define NAND_DEFAULT_TIMINGS -1 - -static int onfi_timing_mode = CONFIG_MTD_NAND_DENALI_TIMING_MODE; - #define DENALI_NAND_NAME "denali-nand" -/* - * We define a macro here that combines all interrupts this driver uses into - * a single constant value, for convenience. - */ -#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ - INTR_STATUS__ECC_TRANSACTION_DONE | \ - INTR_STATUS__ECC_ERR | \ - INTR_STATUS__PROGRAM_FAIL | \ - INTR_STATUS__LOAD_COMP | \ - INTR_STATUS__PROGRAM_COMP | \ - INTR_STATUS__TIME_OUT | \ - INTR_STATUS__ERASE_FAIL | \ - INTR_STATUS__RST_COMP | \ - INTR_STATUS__ERASE_COMP | \ - INTR_STATUS__ECC_UNCOR_ERR) -/* And here we use a variable for interrupt mask, bcs we want to - * change the irq mask during init. That is, we want to enable R/B - * interrupt during init, but not at other times */ -static uint32_t denali_irq_mask = DENALI_IRQ_ALL; +/* for Indexed Addressing */ +#define DENALI_INDEXED_CTRL 0x00 +#define DENALI_INDEXED_DATA 0x10 +#define DENALI_MAP00 (0 << 26) /* direct access to buffer */ +#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ +#define DENALI_MAP10 (2 << 26) /* high-level control plane */ +#define DENALI_MAP11 (3 << 26) /* direct controller access */ -/* - * indicates whether or not the internal value for the flash bank is - * valid or not - */ -#define CHIP_SELECT_INVALID -1 +/* MAP11 access cycle type */ +#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ +#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ +#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ -#define SUPPORT_8BITECC 1 +#define DENALI_BANK(denali) ((denali)->active_bank << 24) -/* - * This macro divides two integers and rounds fractional values up - * to the nearest integer value. - */ -#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) +#define DENALI_INVALID_BANK -1 -/* - * this macro allows us to convert from an MTD structure to our own - * device context (denali) structure. - */ -static inline struct denali_nand_info *nand_to_denali(struct nand_chip *nand) +static struct denali_chip *to_denali_chip(struct nand_chip *chip) { - return container_of(nand, struct denali_nand_info, nand); + return container_of(chip, struct denali_chip, chip); } -/* - * These constants are defined by the driver to enable common driver - * configuration options. - */ -#define SPARE_ACCESS 0x41 -#define MAIN_ACCESS 0x42 -#define MAIN_SPARE_ACCESS 0x43 -#define PIPELINE_ACCESS 0x2000 - -#define DENALI_READ 0 -#define DENALI_WRITE 0x100 - -/* types of device accesses. We can issue commands and get status */ -#define COMMAND_CYCLE 0 -#define ADDR_CYCLE 1 -#define STATUS_CYCLE 2 - -/* - * this is a helper macro that allows us to - * format the bank into the proper bits for the controller - */ -#define BANK(x) ((x) << 24) - -/* forward declarations */ -static void clear_interrupts(struct denali_nand_info *denali); -static uint32_t wait_for_irq(struct denali_nand_info *denali, - uint32_t irq_mask); -static void denali_irq_enable(struct denali_nand_info *denali, - uint32_t int_mask); -static uint32_t read_interrupt_status(struct denali_nand_info *denali); +static struct denali_controller *to_denali_controller(struct nand_chip *chip) +{ + return container_of(chip->controller, struct denali_controller, + controller); +} /* - * Certain operations for the denali NAND controller use an indexed mode to - * read/write data. The operation is performed by writing the address value - * of the command to the device memory followed by the data. This function - * abstracts this common operation. + * Direct Addressing - the slave address forms the control information (command + * type, bank, block, and page address). The slave data is the actual data to + * be transferred. This mode requires 28 bits of address region allocated. */ -static void index_addr(struct denali_nand_info *denali, - uint32_t address, uint32_t data) +static u32 denali_direct_read(struct denali_controller *denali, u32 addr) { - iowrite32(address, denali->flash_mem); - iowrite32(data, denali->flash_mem + 0x10); + return ioread32(denali->host + addr); } -/* Perform an indexed read of the device */ -static void index_addr_read_data(struct denali_nand_info *denali, - uint32_t address, uint32_t *pdata) +static void denali_direct_write(struct denali_controller *denali, u32 addr, + u32 data) { - iowrite32(address, denali->flash_mem); - *pdata = ioread32(denali->flash_mem + 0x10); + iowrite32(data, denali->host + addr); } /* - * We need to buffer some data for some of the NAND core routines. - * The operations manage buffering that data. + * Indexed Addressing - address translation module intervenes in passing the + * control information. This mode reduces the required address range. The + * control information and transferred data are latched by the registers in + * the translation module. */ -static void reset_buf(struct denali_nand_info *denali) +static u32 denali_indexed_read(struct denali_controller *denali, u32 addr) { - denali->buf.head = denali->buf.tail = 0; + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + return ioread32(denali->host + DENALI_INDEXED_DATA); } -static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) +static void denali_indexed_write(struct denali_controller *denali, u32 addr, + u32 data) { - denali->buf.buf[denali->buf.tail++] = byte; + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + iowrite32(data, denali->host + DENALI_INDEXED_DATA); } -/* reads the status of the device */ -static void read_status(struct denali_nand_info *denali) +static void denali_enable_irq(struct denali_controller *denali) { - uint32_t cmd; + int i; - /* initialize the data buffer to store status */ - reset_buf(denali); + for (i = 0; i < denali->nbanks; i++) + iowrite32(U32_MAX, denali->reg + INTR_EN(i)); + iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); +} - cmd = ioread32(denali->flash_reg + WRITE_PROTECT); - if (cmd) - write_byte_to_buf(denali, NAND_STATUS_WP); - else - write_byte_to_buf(denali, 0); +static void denali_clear_irq(struct denali_controller *denali, + int bank, u32 irq_status) +{ + /* write one to clear bits */ + iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); } -/* resets a specific device connected to the core */ -static void reset_bank(struct denali_nand_info *denali) +static void denali_clear_irq_all(struct denali_controller *denali) { - iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); + int i; - /* wait for completion */ - while (ioread32(denali->flash_reg + DEVICE_RESET) & (1 << denali->flash_bank)) - cpu_relax(); + for (i = 0; i < denali->nbanks; i++) + denali_clear_irq(denali, i, U32_MAX); } -/* Reset the flash controller */ -static uint16_t denali_nand_reset(struct denali_nand_info *denali) +static int denali_isr(struct denali_controller *denali) { + u32 irq_status; int i; - for (i = 0; i < denali->max_banks; i++) - iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, - denali->flash_reg + INTR_STATUS(i)); - - for (i = 0; i < denali->max_banks; i++) { - iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); - while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) & - (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) - cpu_relax(); - if (ioread32(denali->flash_reg + INTR_STATUS(i)) & - INTR_STATUS__TIME_OUT) - dev_dbg(denali->dev, - "NAND Reset operation timed out on bank %d\n", i); - } + spin_lock(&denali->irq_lock); - for (i = 0; i < denali->max_banks; i++) - iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, - denali->flash_reg + INTR_STATUS(i)); + for (i = 0; i < denali->nbanks; i++) { + irq_status = ioread32(denali->reg + INTR_STATUS(i)); - return PASS; -} + denali_clear_irq(denali, i, irq_status); -/* - * this routine calculates the ONFI timing values for a given mode and - * programs the clocking register accordingly. The mode is determined by - * the get_onfi_nand_para routine. - */ -static void nand_onfi_timing_set(struct denali_nand_info *denali, - uint16_t mode) -{ - uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; - uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; - uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; - uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; - uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; - uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; - uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; - uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; - uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; - uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; - uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; - uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; - - uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; - uint16_t dv_window = 0; - uint16_t en_lo, en_hi; - uint16_t acc_clks; - uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; - - en_lo = CEIL_DIV(Trp[mode], CLK_X); - en_hi = CEIL_DIV(Treh[mode], CLK_X); -#if ONFI_BLOOM_TIME - if ((en_hi * CLK_X) < (Treh[mode] + 2)) - en_hi++; -#endif - - if ((en_lo + en_hi) * CLK_X < Trc[mode]) - en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); - - if ((en_lo + en_hi) < CLK_MULTI) - en_lo += CLK_MULTI - en_lo - en_hi; - - while (dv_window < 8) { - data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; - - data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; - - data_invalid = data_invalid_rhoh < data_invalid_rloh ? - data_invalid_rhoh : data_invalid_rloh; - - dv_window = data_invalid - Trea[mode]; - - if (dv_window < 8) - en_lo++; - } + if (i != denali->active_bank) + continue; - acc_clks = CEIL_DIV(Trea[mode], CLK_X); + denali->irq_status |= irq_status; - while (acc_clks * CLK_X - Trea[mode] < 3) - acc_clks++; + if (denali->irq_status & denali->irq_mask) + return denali->irq_status; + } - if (data_invalid - acc_clks * CLK_X < 2) - dev_warn(denali->dev, "%s, Line %d: Warning!\n", - __FILE__, __LINE__); + spin_unlock(&denali->irq_lock); - addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); - re_2_we = CEIL_DIV(Trhw[mode], CLK_X); - re_2_re = CEIL_DIV(Trhz[mode], CLK_X); - we_2_re = CEIL_DIV(Twhr[mode], CLK_X); - cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); - if (cs_cnt == 0) - cs_cnt = 1; + return 0; +} - if (Tcea[mode]) { - while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode]) - cs_cnt++; - } +static void denali_reset_irq(struct denali_controller *denali) +{ + unsigned long flags; -#if MODE5_WORKAROUND - if (mode == 5) - acc_clks = 5; -#endif - - /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ - if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 && - ioread32(denali->flash_reg + DEVICE_ID) == 0x88) - acc_clks = 6; - - iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); - iowrite32(re_2_we, denali->flash_reg + RE_2_WE); - iowrite32(re_2_re, denali->flash_reg + RE_2_RE); - iowrite32(we_2_re, denali->flash_reg + WE_2_RE); - iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); - iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); - iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); - iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); + spin_lock_irqsave(&denali->irq_lock, flags); + denali->irq_status = 0; + denali->irq_mask = 0; + spin_unlock_irqrestore(&denali->irq_lock, flags); } -/* queries the NAND device to see what ONFI modes it supports. */ -static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) +static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask) { - int i; + unsigned long flags; + u32 irq_status; + uint64_t start; - /* - * we needn't to do a reset here because driver has already - * reset all the banks before - */ - if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & - ONFI_TIMING_MODE__VALUE)) - return FAIL; - - for (i = 5; i > 0; i--) { - if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & - (0x01 << i)) - break; - } + spin_lock_irqsave(&denali->irq_lock, flags); - nand_onfi_timing_set(denali, i); + irq_status = denali->irq_status; - /* - * By now, all the ONFI devices we know support the page cache - * rw feature. So here we enable the pipeline_rw_ahead feature - */ - /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ - /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ + if (irq_mask & irq_status) { + /* return immediately if the IRQ has already happened. */ + spin_unlock_irqrestore(&denali->irq_lock, flags); + return irq_status; + } - return PASS; -} + denali->irq_mask = irq_mask; + spin_unlock_irqrestore(&denali->irq_lock, flags); -static void get_samsung_nand_para(struct denali_nand_info *denali, - uint8_t device_id) -{ - if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ - /* Set timing register values according to datasheet */ - iowrite32(5, denali->flash_reg + ACC_CLKS); - iowrite32(20, denali->flash_reg + RE_2_WE); - iowrite32(12, denali->flash_reg + WE_2_RE); - iowrite32(14, denali->flash_reg + ADDR_2_DATA); - iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); - iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); - iowrite32(2, denali->flash_reg + CS_SETUP_CNT); + start = get_time_ns(); + + while (1) { + irq_status = denali_isr(denali); + if (irq_status) { +// printf("%s: 0x%08x\n", __func__, irq_status); + return irq_status; + } + if (is_timeout(start, SECOND)) { + printf("%s: Timeout\n", __func__); + return 0; + } } } -static void get_toshiba_nand_para(struct denali_nand_info *denali) +static void denali_select_target(struct nand_chip *chip, int cs) { - uint32_t tmp; + struct denali_controller *denali = to_denali_controller(chip); + struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs]; + struct mtd_info *mtd = nand_to_mtd(chip); - /* - * Workaround to fix a controller bug which reports a wrong - * spare area size for some kind of Toshiba NAND device - */ - if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && - (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { - iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * - ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - iowrite32(tmp, - denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); -#if SUPPORT_15BITECC - iowrite32(15, denali->flash_reg + ECC_CORRECTION); -#elif SUPPORT_8BITECC - iowrite32(8, denali->flash_reg + ECC_CORRECTION); -#endif - } + denali->active_bank = sel->bank; + + iowrite32(1 << (chip->phys_erase_shift - chip->page_shift), + denali->reg + PAGES_PER_BLOCK); + iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, + denali->reg + DEVICE_WIDTH); + iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); + iowrite32(chip->options & NAND_ROW_ADDR_3 ? + 0 : TWO_ROW_ADDR_CYCLES__FLAG, + denali->reg + TWO_ROW_ADDR_CYCLES); + iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | + FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), + denali->reg + ECC_CORRECTION); + iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS); + + if (chip->options & NAND_KEEP_TIMINGS) + return; + + /* update timing registers unless NAND_KEEP_TIMINGS is set */ + iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE); + iowrite32(sel->tcwaw_and_addr_2_data, + denali->reg + TCWAW_AND_ADDR_2_DATA); + iowrite32(sel->re_2_we, denali->reg + RE_2_WE); + iowrite32(sel->acc_clks, denali->reg + ACC_CLKS); + iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT); + iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT); + iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT); + iowrite32(sel->re_2_re, denali->reg + RE_2_RE); } -static void get_hynix_nand_para(struct denali_nand_info *denali, - uint8_t device_id) +static int denali_change_column(struct nand_chip *chip, unsigned int offset, + void *buf, unsigned int len, bool write) { - uint32_t main_size, spare_size; - - switch (device_id) { - case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ - case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ - iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); - iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); - iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - main_size = 4096 * - ioread32(denali->flash_reg + DEVICES_CONNECTED); - spare_size = 224 * - ioread32(denali->flash_reg + DEVICES_CONNECTED); - iowrite32(main_size, - denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); - iowrite32(spare_size, - denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); - iowrite32(0, denali->flash_reg + DEVICE_WIDTH); -#if SUPPORT_15BITECC - iowrite32(15, denali->flash_reg + ECC_CORRECTION); -#elif SUPPORT_8BITECC - iowrite32(8, denali->flash_reg + ECC_CORRECTION); -#endif - break; - default: - dev_warn(denali->dev, - "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n" - "Will use default parameter values instead.\n", - device_id); - } + if (write) + return nand_change_write_column_op(chip, offset, buf, len, + false); + else + return nand_change_read_column_op(chip, offset, buf, len, + false); } -/* - * determines how many NAND chips are connected to the controller. Note for - * Intel CE4100 devices we don't support more than one device. - */ -static void find_valid_banks(struct denali_nand_info *denali) +static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write) { - uint32_t id[denali->max_banks]; - int i; - - denali->total_used_banks = 1; - for (i = 0; i < denali->max_banks; i++) { - index_addr(denali, MODE_11 | (i << 24) | 0, 0x90); - index_addr(denali, MODE_11 | (i << 24) | 1, 0); - index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]); + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int writesize = mtd->writesize; + int oob_skip = denali->oob_skip_bytes; + int ret, i, pos, len; + + for (i = 0; i < ecc->steps; i++) { + pos = i * (ecc->size + ecc->bytes); + len = ecc->size; + + if (pos >= writesize) { + pos += oob_skip; + } else if (pos + len > writesize) { + /* This chunk overwraps the BBM area. Must be split */ + ret = denali_change_column(chip, pos, buf, + writesize - pos, write); + if (ret) + return ret; + + buf += writesize - pos; + len -= writesize - pos; + pos = writesize + oob_skip; + } - dev_dbg(denali->dev, - "Return 1st ID for bank[%d]: %x\n", i, id[i]); + ret = denali_change_column(chip, pos, buf, len, write); + if (ret) + return ret; - if (i == 0) { - if (!(id[i] & 0x0ff)) - break; /* WTF? */ - } else { - if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) - denali->total_used_banks++; - else - break; - } + buf += len; } - if (denali->platform == INTEL_CE4100) { - /* - * Platform limitations of the CE4100 device limit - * users to a single chip solution for NAND. - * Multichip support is not enabled. - */ - if (denali->total_used_banks != 1) { - dev_err(denali->dev, - "Sorry, Intel CE4100 only supports a single NAND device.\n"); - BUG(); - } - } - dev_dbg(denali->dev, - "denali->total_used_banks: %d\n", denali->total_used_banks); + return 0; } -/* - * Use the configuration feature register to determine the maximum number of - * banks that the hardware supports. - */ -static void detect_max_banks(struct denali_nand_info *denali) +static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write) { - uint32_t features = ioread32(denali->flash_reg + FEATURES); + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int oob_skip = denali->oob_skip_bytes; + int ret, i, pos, len; + + /* BBM at the beginning of the OOB area */ + ret = denali_change_column(chip, writesize, buf, oob_skip, write); + if (ret) + return ret; + + buf += oob_skip; + + for (i = 0; i < ecc->steps; i++) { + pos = ecc->size + i * (ecc->size + ecc->bytes); + + if (i == ecc->steps - 1) + /* The last chunk includes OOB free */ + len = writesize + oobsize - pos - oob_skip; + else + len = ecc->bytes; + + if (pos >= writesize) { + pos += oob_skip; + } else if (pos + len > writesize) { + /* This chunk overwraps the BBM area. Must be split */ + ret = denali_change_column(chip, pos, buf, + writesize - pos, write); + if (ret) + return ret; + + buf += writesize - pos; + len -= writesize - pos; + pos = writesize + oob_skip; + } - denali->max_banks = 2 << (features & FEATURES__N_BANKS); -} + ret = denali_change_column(chip, pos, buf, len, write); + if (ret) + return ret; -static void detect_partition_feature(struct denali_nand_info *denali) -{ - /* - * For MRST platform, denali->fwblks represent the - * number of blocks firmware is taken, - * FW is in protect partition and MTD driver has no - * permission to access it. So let driver know how many - * blocks it can't touch. - */ - if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { - if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) & - PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { - denali->fwblks = - ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) & - MIN_MAX_BANK__MIN_VALUE) * - denali->blksperchip) - + - (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) & - MIN_BLK_ADDR__VALUE); - } else { - denali->fwblks = SPECTRA_START_BLOCK; - } - } else { - denali->fwblks = SPECTRA_START_BLOCK; + buf += len; } + + return 0; } -static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) +static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf, + int page) { - uint16_t status = PASS; - uint32_t id_bytes[8], addr; - uint8_t maf_id, device_id; - int i; + int ret; - /* - * Use read id method to get device ID and other params. - * For some NAND chips, controller can't report the correct - * device ID by reading from DEVICE_ID register - */ - addr = MODE_11 | BANK(denali->flash_bank); - index_addr(denali, addr | 0, 0x90); - index_addr(denali, addr | 1, 0); - for (i = 0; i < 8; i++) - index_addr_read_data(denali, addr | 2, &id_bytes[i]); - maf_id = id_bytes[0]; - device_id = id_bytes[1]; - - if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & - ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ - if (FAIL == get_onfi_nand_para(denali)) - return FAIL; - } else if (maf_id == 0xEC) { /* Samsung NAND */ - get_samsung_nand_para(denali, device_id); - } else if (maf_id == 0x98) { /* Toshiba NAND */ - get_toshiba_nand_para(denali); - } else if (maf_id == 0xAD) { /* Hynix NAND */ - get_hynix_nand_para(denali, device_id); - } + if (!buf && !oob_buf) + return -EINVAL; - dev_dbg(denali->dev, - "Dump timing register values:\n" - "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" - "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" - "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", - ioread32(denali->flash_reg + ACC_CLKS), - ioread32(denali->flash_reg + RE_2_WE), - ioread32(denali->flash_reg + RE_2_RE), - ioread32(denali->flash_reg + WE_2_RE), - ioread32(denali->flash_reg + ADDR_2_DATA), - ioread32(denali->flash_reg + RDWR_EN_LO_CNT), - ioread32(denali->flash_reg + RDWR_EN_HI_CNT), - ioread32(denali->flash_reg + CS_SETUP_CNT)); - - find_valid_banks(denali); - - detect_partition_feature(denali); + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; - /* - * If the user specified to override the default timings - * with a specific ONFI mode, we apply those changes here. - */ - if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) - nand_onfi_timing_set(denali, onfi_timing_mode); + if (buf) { + ret = denali_payload_xfer(chip, buf, false); + if (ret) + return ret; + } - return status; -} + if (oob_buf) { + ret = denali_oob_xfer(chip, oob_buf, false); + if (ret) + return ret; + } -static void denali_set_intr_modes(struct denali_nand_info *denali, - uint16_t INT_ENABLE) -{ - if (INT_ENABLE) - iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); - else - iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); + return 0; } -/* - * validation function to verify that the controlling software is making - * a valid request - */ -static inline bool is_flash_bank_valid(int flash_bank) +static int denali_write_raw(struct nand_chip *chip, const void *buf, + const void *oob_buf, int page) { - return flash_bank >= 0 && flash_bank < 4; -} + int ret; + if (!buf && !oob_buf) + return -EINVAL; -static void denali_irq_init(struct denali_nand_info *denali) -{ - uint32_t int_mask; - int i; - - /* Disable global interrupts */ - denali_set_intr_modes(denali, false); + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; - int_mask = DENALI_IRQ_ALL; + if (buf) { + ret = denali_payload_xfer(chip, (void *)buf, true); + if (ret) + return ret; + } - /* Clear all status bits */ - for (i = 0; i < denali->max_banks; ++i) - iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); + if (oob_buf) { + ret = denali_oob_xfer(chip, (void *)oob_buf, true); + if (ret) + return ret; + } - denali_irq_enable(denali, int_mask); + return nand_prog_page_end_op(chip); } - -static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) +static int denali_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) { - denali_set_intr_modes(denali, false); + return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL, + page); } -static void denali_irq_enable(struct denali_nand_info *denali, - uint32_t int_mask) +static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) { - int i; - - for (i = 0; i < denali->max_banks; ++i) - iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); + return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL, + page); } -/* Interrupts are cleared by writing a 1 to the appropriate status bit */ -static inline void clear_interrupt(struct denali_nand_info *denali, - uint32_t irq_mask) +static int denali_read_oob(struct nand_chip *chip, int page) { - uint32_t intr_status_reg; - - intr_status_reg = INTR_STATUS(denali->flash_bank); - - iowrite32(irq_mask, denali->flash_reg + intr_status_reg); + return denali_read_raw(chip, NULL, chip->oob_poi, page); } -static void clear_interrupts(struct denali_nand_info *denali) +static int denali_write_oob(struct nand_chip *chip, int page) { - uint32_t status; - - status = read_interrupt_status(denali); - clear_interrupt(denali, status); - - denali->irq_status = 0x0; + return denali_write_raw(chip, NULL, chip->oob_poi, page); } -static uint32_t read_interrupt_status(struct denali_nand_info *denali) +static int denali_check_erased_page(struct nand_chip *chip, u8 *buf, + unsigned long uncor_ecc_flags, + unsigned int max_bitflips) { - uint32_t intr_status_reg; + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes; + int i, stat; + + for (i = 0; i < ecc->steps; i++) { + if (!(uncor_ecc_flags & BIT(i))) + continue; + + stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code, + ecc->bytes, NULL, 0, + ecc->strength); + if (stat < 0) { + ecc_stats->failed++; + } else { + ecc_stats->corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } - intr_status_reg = INTR_STATUS(denali->flash_bank); + buf += ecc->size; + ecc_code += ecc->bytes; + } - return ioread32(denali->flash_reg + intr_status_reg); + return max_bitflips; } -static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) +static int denali_hw_ecc_fixup(struct nand_chip *chip, + unsigned long *uncor_ecc_flags) { - uint32_t intr_status = 0; - uint64_t start; - - if (!is_flash_bank_valid(denali->flash_bank)) { - dev_dbg(denali->dev, "No valid chip selected (%d)\n", - denali->flash_bank); - return 0; - } + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + int bank = denali->active_bank; + u32 ecc_cor; + unsigned int max_bitflips; - start = get_time_ns(); + ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); + ecc_cor >>= ECC_COR_INFO__SHIFT(bank); - while (!is_timeout(start, 1000 * MSECOND)) { - intr_status = read_interrupt_status(denali); - - if (intr_status != 0) - clear_interrupt(denali, intr_status); - - if (intr_status & irq_mask) - return intr_status; + if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { + /* + * This flag is set when uncorrectable error occurs at least in + * one ECC sector. We can not know "how many sectors", or + * "which sector(s)". We need erase-page check for all sectors. + */ + *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); + return 0; } - /* timeout */ - dev_dbg(denali->dev, "timeout occurred, status = 0x%x, mask = 0x%x\n", - intr_status, irq_mask); - - return 0; -} - -/* - * This helper function setups the registers for ECC and whether or not - * the spare area will be transferred. - */ -static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, - bool transfer_spare) -{ - int ecc_en_flag, transfer_spare_flag; + max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); - /* set ECC, transfer spare bits if needed */ - ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; - transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; + /* + * The register holds the maximum of per-sector corrected bitflips. + * This is suitable for the return value of the ->read_page() callback. + * Unfortunately, we can not know the total number of corrected bits in + * the page. Increase the stats by max_bitflips. (compromised solution) + */ + ecc_stats->corrected += max_bitflips; - /* Enable spare area/ECC per user's request. */ - iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); - iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); + return max_bitflips; } -/* - * sends a pipeline command operation to the controller. See the Denali NAND - * controller's user guide for more information (section 4.2.3.6). - */ -static int denali_send_pipeline_cmd(struct denali_nand_info *denali, - bool ecc_en, bool transfer_spare, - int access_type, int op) +static int denali_sw_ecc_fixup(struct nand_chip *chip, + unsigned long *uncor_ecc_flags, u8 *buf) { - int status = PASS; - uint32_t page_count = 1; - uint32_t addr, cmd, irq_status, irq_mask; - - if (op == DENALI_READ) - irq_mask = INTR_STATUS__LOAD_COMP; - else if (op == DENALI_WRITE) - irq_mask = 0; - else - BUG(); - - setup_ecc_for_xfer(denali, ecc_en, transfer_spare); - - clear_interrupts(denali); - - addr = BANK(denali->flash_bank) | denali->page; - - if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { - /* read spare area */ - cmd = MODE_10 | addr; - index_addr(denali, cmd, access_type); - - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else if (op == DENALI_READ) { - /* setup page read request for access type */ - cmd = MODE_10 | addr; - index_addr(denali, cmd, access_type); - - /* - * page 33 of the NAND controller spec indicates we should not - * use the pipeline commands in Spare area only mode. - * So we don't. - */ - if (access_type == SPARE_ACCESS) { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else { - index_addr(denali, cmd, - PIPELINE_ACCESS | op | page_count); - + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; + unsigned int ecc_size = chip->ecc.size; + unsigned int bitflips = 0; + unsigned int max_bitflips = 0; + u32 err_addr, err_cor_info; + unsigned int err_byte, err_sector, err_device; + u8 err_cor_value; + unsigned int prev_sector = 0; + u32 irq_status; + + denali_reset_irq(denali); + + do { + err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); + err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); + err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); + + err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); + err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, + err_cor_info); + err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, + err_cor_info); + + /* reset the bitflip counter when crossing ECC sector */ + if (err_sector != prev_sector) + bitflips = 0; + + if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { + /* + * Check later if this is a real ECC error, or + * an erased sector. + */ + *uncor_ecc_flags |= BIT(err_sector); + } else if (err_byte < ecc_size) { /* - * wait for command to be accepted - * can always use status0 bit as the - * mask is identical for each bank. + * If err_byte is larger than ecc_size, means error + * happened in OOB, so we ignore it. It's no need for + * us to correct it err_device is represented the NAND + * error bits are happened in if there are more than + * one NAND connected. */ - irq_status = wait_for_irq(denali, irq_mask); + int offset; + unsigned int flips_in_byte; - if (irq_status == 0) { - dev_err(denali->dev, - "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n", - cmd, denali->page, addr); - status = FAIL; - } else { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } + offset = (err_sector * ecc_size + err_byte) * + denali->devs_per_cs + err_device; + + /* correct the ECC error */ + flips_in_byte = hweight8(buf[offset] ^ err_cor_value); + buf[offset] ^= err_cor_value; + ecc_stats->corrected += flips_in_byte; + bitflips += flips_in_byte; + + max_bitflips = max(max_bitflips, bitflips); } - } - return status; -} -/* helper function that simply writes a buffer to the flash */ -static int write_data_to_flash_mem(struct denali_nand_info *denali, - const uint8_t *buf, int len) -{ - uint32_t *buf32; - int i; + prev_sector = err_sector; + } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); /* - * verify that the len is a multiple of 4. - * see comment in read_data_from_flash_mem() + * Once handle all ECC errors, controller will trigger an + * ECC_TRANSACTION_DONE interrupt. */ - BUG_ON((len % 4) != 0); + irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); + if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) + return -EIO; - /* write the data to the flash memory */ - buf32 = (uint32_t *)buf; - for (i = 0; i < len / 4; i++) - iowrite32(*buf32++, denali->flash_mem + 0x10); - return i * 4; /* intent is to return the number of bytes read */ + return max_bitflips; } -/* helper function that simply reads a buffer from the flash */ -static int read_data_from_flash_mem(struct denali_nand_info *denali, - uint8_t *buf, int len) +static void denali_setup_dma64(struct denali_controller *denali, + dma_addr_t dma_addr, int page, bool write) { - uint32_t *buf32; - int i; + u32 mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali) | page; + + /* DMA is a three step process */ /* - * we assume that len will be a multiple of 4, if not it would be nice - * to know about it ASAP rather than have random failures... - * This assumption is based on the fact that this function is designed - * to be used to read flash pages, which are typically multiples of 4. + * 1. setup transfer type, interrupt when complete, + * burst len = 64 bytes, the number of pages */ - BUG_ON((len % 4) != 0); + denali->host_write(denali, mode, + 0x01002000 | (64 << 16) | + (write ? BIT(8) : 0) | page_count); + + /* 2. set memory low address */ + denali->host_write(denali, mode, lower_32_bits(dma_addr)); - /* transfer the data from the flash */ - buf32 = (uint32_t *)buf; - for (i = 0; i < len / 4; i++) - *buf32++ = ioread32(denali->flash_mem + 0x10); - return i * 4; /* intent is to return the number of bytes read */ + /* 3. set memory high address */ + denali->host_write(denali, mode, upper_32_bits(dma_addr)); } -/* writes OOB data to the device */ -static int write_oob_data(struct nand_chip *chip, uint8_t *buf, int page) +static void denali_setup_dma32(struct denali_controller *denali, + dma_addr_t dma_addr, int page, bool write) { - struct mtd_info *mtd = nand_to_mtd(chip); - struct denali_nand_info *denali = nand_to_denali(chip); - uint32_t irq_status; - uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | - INTR_STATUS__PROGRAM_FAIL; - int status = 0; + u32 mode; + const int page_count = 1; - denali->page = page; + mode = DENALI_MAP10 | DENALI_BANK(denali); - if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, - DENALI_WRITE) == PASS) { - write_data_to_flash_mem(denali, buf, mtd->oobsize); + /* DMA is a four step process */ - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); + /* 1. setup transfer type and # of pages */ + denali->host_write(denali, mode | page, + 0x2000 | (write ? BIT(8) : 0) | page_count); - if (irq_status == 0) { - dev_err(denali->dev, "OOB write failed\n"); - status = -EIO; - } + /* 2. set memory high address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); - /* set the device back to MAIN_ACCESS */ - { - uint32_t addr; - uint32_t cmd; - addr = BANK(denali->flash_bank) | denali->page; - cmd = MODE_10 | addr; - index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); - } + /* 3. set memory low address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); - } else { - dev_err(denali->dev, "unable to send pipeline command\n"); - status = -EIO; - } - return status; + /* 4. interrupt when complete, burst len = 64 bytes */ + denali->host_write(denali, mode | 0x14000, 0x2400); } -/* reads OOB data from the device */ -static void read_oob_data(struct nand_chip *chip, uint8_t *buf, int page) +static int denali_pio_read(struct denali_controller *denali, u32 *buf, + size_t size, int page) { - struct mtd_info *mtd = nand_to_mtd(chip); - struct denali_nand_info *denali = nand_to_denali(chip); - uint32_t irq_mask = INTR_STATUS__LOAD_COMP; - uint32_t irq_status, addr, cmd; + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + u32 irq_status, ecc_err_mask; + int i; - denali->page = page; + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + ecc_err_mask = INTR__ECC_UNCOR_ERR; + else + ecc_err_mask = INTR__ECC_ERR; - if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, - DENALI_READ) == PASS) { - read_data_from_flash_mem(denali, buf, mtd->oobsize); + denali_reset_irq(denali); - /* - * wait for command to be accepted - * can always use status0 bit as the - * mask is identical for each bank. - */ - irq_status = wait_for_irq(denali, irq_mask); + for (i = 0; i < size / 4; i++) + buf[i] = denali->host_read(denali, addr); - if (irq_status == 0) - dev_err(denali->dev, "page on OOB timeout %d\n", - denali->page); + irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); + if (!(irq_status & INTR__PAGE_XFER_INC)) + return -EIO; - /* - * We set the device back to MAIN_ACCESS here as I observed - * instability with the controller if you do a block erase - * and the last transaction was a SPARE_ACCESS. Block erase - * is reliable (according to the MTD test infrastructure) - * if you are in MAIN_ACCESS. - */ - addr = BANK(denali->flash_bank) | denali->page; - cmd = MODE_10 | addr; - index_addr(denali, cmd, MAIN_ACCESS); - } + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return irq_status & ecc_err_mask ? -EBADMSG : 0; } -/* - * this function examines buffers to see if they contain data that - * indicate that the buffer is part of an erased region of flash. - */ -static bool is_erased(uint8_t *buf, int len) +static int denali_pio_write(struct denali_controller *denali, const u32 *buf, + size_t size, int page) { + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + u32 irq_status; int i; - for (i = 0; i < len; i++) - if (buf[i] != 0xFF) - return false; - return true; + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + denali->host_write(denali, addr, buf[i]); + + irq_status = denali_wait_for_irq(denali, + INTR__PROGRAM_COMP | + INTR__PROGRAM_FAIL); + if (!(irq_status & INTR__PROGRAM_COMP)) + return -EIO; + + return 0; } -#define ECC_SECTOR_SIZE 512 -#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) -#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) -#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) -#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) -#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) -#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) +static int denali_pio_xfer(struct denali_controller *denali, void *buf, + size_t size, int page, bool write) +{ + if (write) + return denali_pio_write(denali, buf, size, page); + else + return denali_pio_read(denali, buf, size, page); +} -static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, - uint32_t irq_status, unsigned int *max_bitflips) +static int denali_dma_xfer(struct denali_controller *denali, void *buf, + size_t size, int page, bool write) { - struct nand_chip *chip = &denali->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - bool check_erased_page = false; - unsigned int bitflips = 0; + dma_addr_t dma_addr; + u32 irq_mask, irq_status, ecc_err_mask; + enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + int ret = 0; - if (denali->have_hw_ecc_fixup && - (irq_status & INTR_STATUS__ECC_UNCOR_ERR)) { - clear_interrupts(denali); - denali_set_intr_modes(denali, true); - check_erased_page = true; - } else if (irq_status & INTR_STATUS__ECC_ERR) { - /* read the ECC errors. we'll ignore them for now */ - uint32_t err_address, err_correction_info, err_byte, - err_sector, err_device, err_correction_value; - denali_set_intr_modes(denali, false); - - do { - err_address = ioread32(denali->flash_reg + - ECC_ERROR_ADDRESS); - err_sector = ECC_SECTOR(err_address); - err_byte = ECC_BYTE(err_address); - - err_correction_info = ioread32(denali->flash_reg + - ERR_CORRECTION_INFO); - err_correction_value = - ECC_CORRECTION_VALUE(err_correction_info); - err_device = ECC_ERR_DEVICE(err_correction_info); - - if (ECC_ERROR_CORRECTABLE(err_correction_info)) { - /* - * If err_byte is larger than ECC_SECTOR_SIZE, - * means error happened in OOB, so we ignore - * it. It's no need for us to correct it - * err_device is represented the NAND error - * bits are happened in if there are more - * than one NAND connected. - */ - if (err_byte < ECC_SECTOR_SIZE) { - int offset; - - offset = (err_sector * - ECC_SECTOR_SIZE + - err_byte) * - denali->devnum + - err_device; - /* correct the ECC error */ - buf[offset] ^= err_correction_value; - mtd->ecc_stats.corrected++; - bitflips++; - } - } else { - /* - * if the error is not correctable, need to - * look at the page to see if it is an erased - * page. if so, then it's not a real ECC error - */ - check_erased_page = true; - } - } while (!ECC_LAST_ERR(err_correction_info)); + dma_addr = dma_map_single(denali->dev, buf, size, dir); + if (dma_mapping_error(denali->dev, dma_addr)) { + dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); + return denali_pio_xfer(denali, buf, size, page, write); + } + + if (write) { /* - * Once handle all ecc errors, controller will trigger - * a ECC_TRANSACTION_DONE interrupt, so here just wait - * for a while for this interrupt + * INTR__PROGRAM_COMP is never asserted for the DMA transfer. + * We can use INTR__DMA_CMD_COMP instead. This flag is asserted + * when the page program is completed. */ - while (!(read_interrupt_status(denali) & - INTR_STATUS__ECC_TRANSACTION_DONE)) - cpu_relax(); - clear_interrupts(denali); - denali_set_intr_modes(denali, true); + irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; + ecc_err_mask = 0; + } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_UNCOR_ERR; + } else { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_ERR; } - *max_bitflips = bitflips; - return check_erased_page; + + iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); + /* + * The ->setup_dma() hook kicks DMA by using the data/command + * interface, which belongs to a different AXI port from the + * register interface. Read back the register to avoid a race. + */ + ioread32(denali->reg + DMA_ENABLE); + + denali_reset_irq(denali); + denali->setup_dma(denali, dma_addr, page, write); + + irq_status = denali_wait_for_irq(denali, irq_mask); + if (!(irq_status & INTR__DMA_CMD_COMP)) + ret = -EIO; + else if (irq_status & ecc_err_mask) + ret = -EBADMSG; + + iowrite32(0, denali->reg + DMA_ENABLE); + + dma_unmap_single(denali->dev, dma_addr, size, dir); + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return ret; } -/* programs the controller to either enable/disable DMA transfers */ -static void denali_enable_dma(struct denali_nand_info *denali, bool en) +static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size, + int page, bool write) { - iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE); - ioread32(denali->flash_reg + DMA_ENABLE); + struct denali_controller *denali = to_denali_controller(chip); + + denali_select_target(chip, chip->cur_cs); + + if (denali->dma_avail) + return denali_dma_xfer(denali, buf, size, page, write); + else + return denali_pio_xfer(denali, buf, size, page, write); } -/* setups the HW to perform the data DMA */ -static void denali_setup_dma(struct denali_nand_info *denali, int op) +static int denali_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) { - uint32_t mode; - const int page_count = 1; - uint32_t addr = (unsigned long)denali->buf.buf; + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long uncor_ecc_flags = 0; + int stat = 0; + int ret; - mode = MODE_10 | BANK(denali->flash_bank); + ret = denali_page_xfer(chip, buf, mtd->writesize, page, false); + if (ret && ret != -EBADMSG) + return ret; - /* DMA is a four step process */ + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags); + else if (ret == -EBADMSG) + stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf); - /* 1. setup transfer type and # of pages */ - index_addr(denali, mode | denali->page, 0x2000 | op | page_count); + if (stat < 0) + return stat; - /* 2. set memory high address bits 23:8 */ - index_addr(denali, mode | ((addr >> 16) << 8), 0x2200); + if (uncor_ecc_flags) { + ret = denali_read_oob(chip, page); + if (ret) + return ret; - /* 3. set memory low address bits 23:8 */ - index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300); + stat = denali_check_erased_page(chip, buf, + uncor_ecc_flags, stat); + } - /* 4. interrupt when complete, burst len = 64 bytes */ - index_addr(denali, mode | 0x14000, 0x2400); + return stat; } -/* - * writes a page. user specifies type, and this function handles the - * configuration details. - */ -static int write_page(struct nand_chip *chip, const uint8_t *buf, bool raw_xfer, - int page) +static int denali_write_page(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); - struct denali_nand_info *denali = nand_to_denali(chip); - dma_addr_t addr = (unsigned long)denali->buf.buf; - size_t size = mtd->writesize + mtd->oobsize; - uint32_t irq_status; - uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | - INTR_STATUS__PROGRAM_FAIL; + + return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true); +} + +static int denali_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + static const unsigned int data_setup_on_host = 10000; + struct denali_controller *denali = to_denali_controller(chip); + struct denali_chip_sel *sel; + const struct nand_sdr_timings *timings; + unsigned long t_x, mult_x; + int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; + int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; + int addr_2_data_mask; + u32 tmp; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + /* clk_x period in picoseconds */ + t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); + if (!t_x) + return -EINVAL; /* - * if it is a raw xfer, we want to disable ecc and send the spare area. - * !raw_xfer - enable ecc - * raw_xfer - transfer spare + * The bus interface clock, clk_x, is phase aligned with the core clock. + * The clk_x is an integral multiple N of the core clk. The value N is + * configured at IP delivery time, and its available value is 4, 5, 6. */ - setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); + mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate); + if (mult_x < 4 || mult_x > 6) + return -EINVAL; - nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; - /* copy buffer into DMA buffer */ - memcpy(denali->buf.buf, buf, mtd->writesize); + sel = &to_denali_chip(chip)->sels[chipnr]; - if (raw_xfer) { - /* transfer the data to the spare area */ - memcpy(denali->buf.buf + mtd->writesize, - chip->oob_poi, - mtd->oobsize); - } + /* tRWH -> RE_2_WE */ + re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x); + re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); - dma_sync_single_for_device(addr, size, DMA_TO_DEVICE); + tmp = ioread32(denali->reg + RE_2_WE); + tmp &= ~RE_2_WE__VALUE; + tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); + sel->re_2_we = tmp; - clear_interrupts(denali); - denali_enable_dma(denali, true); + /* tRHZ -> RE_2_RE */ + re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x); + re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); - denali_setup_dma(denali, DENALI_WRITE); + tmp = ioread32(denali->reg + RE_2_RE); + tmp &= ~RE_2_RE__VALUE; + tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); + sel->re_2_re = tmp; - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); + /* + * tCCS, tWHR -> WE_2_RE + * + * With WE_2_RE properly set, the Denali controller automatically takes + * care of the delay; the driver need not set NAND_WAIT_TCCS. + */ + we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x); + we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); - if (irq_status == 0) { - dev_err(denali->dev, "timeout on write_page (type = %d)\n", - raw_xfer); - denali->status = NAND_STATUS_FAIL; - } + tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); + tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; + tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); + sel->hwhr2_and_we_2_re = tmp; - denali_enable_dma(denali, false); - dma_sync_single_for_cpu(addr, size, DMA_TO_DEVICE); + /* tADL -> ADDR_2_DATA */ - return nand_prog_page_end_op(chip); -} + /* for older versions, ADDR_2_DATA is only 6 bit wide */ + addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + if (denali->revision < 0x0501) + addr_2_data_mask >>= 1; -/* NAND core entry points */ + addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x); + addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); + + tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); + tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); + sel->tcwaw_and_addr_2_data = tmp; + + /* tREH, tWH -> RDWR_EN_HI_CNT */ + rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), + t_x); + rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); + + tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); + tmp &= ~RDWR_EN_HI_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); + sel->rdwr_en_hi_cnt = tmp; -/* - * this is the callback that the NAND core calls to write a page. Since - * writing a page with ECC or without is similar, all the work is done - * by write_page above. - */ -static int denali_write_page(struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ /* - * for regular page writes, we let HW handle all the ECC - * data written to the device. + * tREA -> ACC_CLKS + * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT */ - return write_page(chip, buf, false, page); -} -/* - * This is the callback that the NAND core calls to write a page without ECC. - * raw access is similar to ECC page writes, so all the work is done in the - * write_page() function above. - */ -static int denali_write_page_raw(struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ /* - * for raw page writes, we want to disable ECC and simply write - * whatever data is in the buffer. + * Determine the minimum of acc_clks to meet the setup timing when + * capturing the incoming data. + * + * The delay on the chip side is well-defined as tREA, but we need to + * take additional delay into account. This includes a certain degree + * of unknowledge, such as signal propagation delays on the PCB and + * in the SoC, load capacity of the I/O pins, etc. */ - return write_page(chip, buf, true, page); + acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x); + + /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */ + rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x); + + /* Extend rdwr_en_lo to meet the data hold timing */ + rdwr_en_lo = max_t(int, rdwr_en_lo, + acc_clks - timings->tRHOH_min / t_x); + + /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */ + rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), + t_x); + rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); + rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); + + /* Center the data latch timing for extra safety */ + acc_clks = (acc_clks + rdwr_en_lo + + DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2; + acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); + + tmp = ioread32(denali->reg + ACC_CLKS); + tmp &= ~ACC_CLKS__VALUE; + tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); + sel->acc_clks = tmp; + + tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); + tmp &= ~RDWR_EN_LO_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); + sel->rdwr_en_lo_cnt = tmp; + + /* tCS, tCEA -> CS_SETUP_CNT */ + cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo, + (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks, + 0); + cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); + + tmp = ioread32(denali->reg + CS_SETUP_CNT); + tmp &= ~CS_SETUP_CNT__VALUE; + tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); + sel->cs_setup_cnt = tmp; + + return 0; } -static int denali_write_oob(struct nand_chip *chip, int page) +int denali_calc_ecc_bytes(int step_size, int strength) { - return write_oob_data(chip, chip->oob_poi, page); + /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ + return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; } +EXPORT_SYMBOL(denali_calc_ecc_bytes); -static int denali_read_oob(struct nand_chip *chip, int page) +static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) { - read_oob_data(chip, chip->oob_poi, page); + struct nand_chip *chip = mtd_to_nand(mtd); + struct denali_controller *denali = to_denali_controller(chip); + + if (section > 0) + return -ERANGE; + + oobregion->offset = denali->oob_skip_bytes; + oobregion->length = chip->ecc.total; return 0; } -static int denali_read_page(struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) +static int denali_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) { - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int max_bitflips = 0; - struct denali_nand_info *denali = nand_to_denali(chip); - - dma_addr_t addr = (unsigned long)denali->buf.buf; - size_t size = mtd->writesize + mtd->oobsize; + struct nand_chip *chip = mtd_to_nand(mtd); + struct denali_controller *denali = to_denali_controller(chip); - uint32_t irq_status; - uint32_t irq_mask = denali->have_hw_ecc_fixup ? - (INTR_STATUS__DMA_CMD_COMP) : - (INTR_STATUS__ECC_TRANSACTION_DONE | INTR_STATUS__ECC_ERR); - bool check_erased_page = false; + if (section > 0) + return -ERANGE; - setup_ecc_for_xfer(denali, true, false); + oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; + oobregion->length = mtd->oobsize - oobregion->offset; - nand_read_page_op(chip, page, 0, NULL, 0); + return 0; +} - denali_enable_dma(denali, true); - dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE); +static const struct mtd_ooblayout_ops denali_ooblayout_ops = { + .ecc = denali_ooblayout_ecc, + .free = denali_ooblayout_free, +}; - clear_interrupts(denali); - denali_setup_dma(denali, DENALI_READ); +static int denali_multidev_fixup(struct nand_chip *chip) +{ + struct denali_controller *denali = to_denali_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg; - /* wait for operation to complete */ - irq_status = wait_for_irq(denali, irq_mask); + memorg = nanddev_get_memorg(&chip->base); - dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE); + /* + * Support for multi device: + * When the IP configuration is x16 capable and two x8 chips are + * connected in parallel, DEVICES_CONNECTED should be set to 2. + * In this case, the core framework knows nothing about this fact, + * so we should tell it the _logical_ pagesize and anything necessary. + */ + denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); - memcpy(buf, denali->buf.buf, mtd->writesize); + /* + * On some SoCs, DEVICES_CONNECTED is not auto-detected. + * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. + */ + if (denali->devs_per_cs == 0) { + denali->devs_per_cs = 1; + iowrite32(1, denali->reg + DEVICES_CONNECTED); + } - check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); - denali_enable_dma(denali, false); + if (denali->devs_per_cs == 1) + return 0; - if (check_erased_page) { - if (denali->have_hw_ecc_fixup) { - /* When we have hw ecc fixup, don't check oob. - * That code below looks jacked up anyway. I mean, - * look at it, wtf? */ - if (!is_erased(buf, mtd->writesize)) - mtd->ecc_stats.failed++; - } else { - read_oob_data(chip, chip->oob_poi, denali->page); - - /* check ECC failures that may have occurred on - * erased pages */ - if (check_erased_page) { - if (!is_erased(buf, mtd->writesize)) - mtd->ecc_stats.failed++; - if (!is_erased(buf, mtd->oobsize)) - mtd->ecc_stats.failed++; - } - } + if (denali->devs_per_cs != 2) { + dev_err(denali->dev, "unsupported number of devices %d\n", + denali->devs_per_cs); + return -EINVAL; } - return max_bitflips; + + /* 2 chips in parallel */ + memorg->pagesize <<= 1; + memorg->oobsize <<= 1; + mtd->size <<= 1; + mtd->erasesize <<= 1; + mtd->writesize <<= 1; + mtd->oobsize <<= 1; + chip->page_shift += 1; + chip->phys_erase_shift += 1; + chip->bbt_erase_shift += 1; + chip->chip_shift += 1; + chip->pagemask <<= 1; + chip->ecc.size <<= 1; + chip->ecc.bytes <<= 1; + chip->ecc.strength <<= 1; + denali->oob_skip_bytes <<= 1; + + return 0; } -static int denali_read_page_raw(struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) +static int denali_attach_chip(struct nand_chip *chip) { + struct denali_controller *denali = to_denali_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); - struct denali_nand_info *denali = nand_to_denali(chip); - dma_addr_t addr = (unsigned long)denali->buf.buf; - size_t size = mtd->writesize + mtd->oobsize; - uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; - - nand_read_page_op(chip, page, 0, NULL, 0); - - if (page != denali->page) { - dev_err(denali->dev, - "IN %s: page %d is not equal to denali->page %d", - __func__, page, denali->page); - BUG(); + int ret; + + ret = nand_ecc_choose_conf(chip, denali->ecc_caps, + mtd->oobsize - denali->oob_skip_bytes); + if (ret) { + printk("%s: %d\n", __func__, ret); + dev_err(denali->dev, "Failed to setup ECC settings.\n"); + return ret; } - setup_ecc_for_xfer(denali, false, true); - denali_enable_dma(denali, true); - - dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE); - - clear_interrupts(denali); - denali_setup_dma(denali, DENALI_READ); - - /* wait for operation to complete */ - wait_for_irq(denali, irq_mask); + dev_dbg(denali->dev, + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); - dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE); + ret = denali_multidev_fixup(chip); + if (ret) + return ret; - denali_enable_dma(denali, false); + return 0; +} - memcpy(buf, denali->buf.buf, mtd->writesize); - memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); +static void denali_exec_in8(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len) +{ + int i; - return 0; + for (i = 0; i < len; i++) + buf[i] = denali->host_read(denali, type | DENALI_BANK(denali)); } -static uint8_t denali_read_byte(struct nand_chip *chip) +static void denali_exec_in16(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len) { - struct denali_nand_info *denali = nand_to_denali(chip); - uint8_t result = 0xff; + u32 data; + int i; - if (denali->buf.head < denali->buf.tail) - result = denali->buf.buf[denali->buf.head++]; + for (i = 0; i < len; i += 2) { + data = denali->host_read(denali, type | DENALI_BANK(denali)); + /* bit 31:24 and 15:8 are used for DDR */ + buf[i] = data; + buf[i + 1] = data >> 16; + } +} - return result; +static void denali_exec_in(struct denali_controller *denali, u32 type, + u8 *buf, unsigned int len, bool width16) +{ + if (width16) + denali_exec_in16(denali, type, buf, len); + else + denali_exec_in8(denali, type, buf, len); } -static void denali_read_buf(struct nand_chip *chip, uint8_t *buf, int len) +static void denali_exec_out8(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len) { int i; + for (i = 0; i < len; i++) - buf[i] = denali_read_byte(chip); + denali->host_write(denali, type | DENALI_BANK(denali), buf[i]); } -static void denali_select_chip(struct nand_chip *chip, int num) +static void denali_exec_out16(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len) { - struct denali_nand_info *denali = nand_to_denali(chip); + int i; + + for (i = 0; i < len; i += 2) + denali->host_write(denali, type | DENALI_BANK(denali), + buf[i + 1] << 16 | buf[i]); +} - denali->flash_bank = num; +static void denali_exec_out(struct denali_controller *denali, u32 type, + const u8 *buf, unsigned int len, bool width16) +{ + if (width16) + denali_exec_out16(denali, type, buf, len); + else + denali_exec_out8(denali, type, buf, len); } -static int denali_waitfunc(struct nand_chip *chip) +static int denali_exec_waitrdy(struct denali_controller *denali) { - struct denali_nand_info *denali = nand_to_denali(chip); - int status = denali->status; + u32 irq_stat; - denali->status = 0; + /* R/B# pin transitioned from low to high? */ + irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT); - return status; + /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */ + denali_reset_irq(denali); + + return irq_stat & INTR__INT_ACT ? 0 : -EIO; } -static void denali_cmdfunc(struct nand_chip *chip, unsigned int cmd, int col, - int page) +static int denali_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) { - struct denali_nand_info *denali = nand_to_denali(chip); - uint32_t addr, id; - int i; + struct denali_controller *denali = to_denali_controller(chip); - switch (cmd) { - case NAND_CMD_PAGEPROG: - break; - case NAND_CMD_STATUS: - read_status(denali); - break; - case NAND_CMD_READID: - reset_buf(denali); - /* - * sometimes ManufactureId read from register is not right - * e.g. some of Micron MT29F32G08QAA MLC NAND chips - * So here we send READID cmd to NAND insteand - */ - addr = MODE_11 | BANK(denali->flash_bank); - index_addr(denali, addr | 0, 0x90); - index_addr(denali, addr | 1, col); - for (i = 0; i < 8; i++) { - index_addr_read_data(denali, addr | 2, &id); - write_byte_to_buf(denali, id); - } - break; - case NAND_CMD_PARAM: - reset_buf(denali); - - /* turn on R/B interrupt */ - denali_set_intr_modes(denali, false); - denali_irq_mask = DENALI_IRQ_ALL | INTR_STATUS__INT_ACT; - clear_interrupts(denali); - denali_irq_enable(denali, denali_irq_mask); - denali_set_intr_modes(denali, true); - - addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); - index_addr(denali, (uint32_t)addr | 0, cmd); - index_addr(denali, (uint32_t)addr | 1, col & 0xFF); - /* Wait tR time... */ - udelay(25); - /* And then wait for R/B interrupt */ - wait_for_irq(denali, INTR_STATUS__INT_ACT); - - /* turn off R/B interrupt now */ - denali_irq_mask = DENALI_IRQ_ALL; - denali_set_intr_modes(denali, false); - denali_irq_enable(denali, denali_irq_mask); - denali_set_intr_modes(denali, true); - - for (i = 0; i < 256; i++) { - index_addr_read_data(denali, - (uint32_t)addr | 2, - &id); - write_byte_to_buf(denali, id); - } - break; - case NAND_CMD_READ0: - case NAND_CMD_SEQIN: - denali->page = page; - break; - case NAND_CMD_RESET: - reset_bank(denali); - break; - case NAND_CMD_READOOB: - /* TODO: Read OOB data */ - break; - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - addr = MODE_10 | BANK(denali->flash_bank) | page; - index_addr(denali, addr, 0x1); - break; + switch (instr->type) { + case NAND_OP_CMD_INSTR: + denali_exec_out8(denali, DENALI_MAP11_CMD, + &instr->ctx.cmd.opcode, 1); + return 0; + case NAND_OP_ADDR_INSTR: + denali_exec_out8(denali, DENALI_MAP11_ADDR, + instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + return 0; + case NAND_OP_DATA_IN_INSTR: + denali_exec_in(denali, DENALI_MAP11_DATA, + instr->ctx.data.buf.in, + instr->ctx.data.len, + !instr->ctx.data.force_8bit && + chip->options & NAND_BUSWIDTH_16); + return 0; + case NAND_OP_DATA_OUT_INSTR: + denali_exec_out(denali, DENALI_MAP11_DATA, + instr->ctx.data.buf.out, + instr->ctx.data.len, + !instr->ctx.data.force_8bit && + chip->options & NAND_BUSWIDTH_16); + return 0; + case NAND_OP_WAITRDY_INSTR: + return denali_exec_waitrdy(denali); default: - pr_err(": unsupported command received 0x%x\n", cmd); - break; + WARN_ONCE(1, "unsupported NAND instruction type: %d\n", + instr->type); + + return -EINVAL; } } -/* end NAND core entry points */ -/* Initialization code to bring the device up to a known good state */ -static void denali_hw_init(struct denali_nand_info *denali) +static int denali_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) { + int i, ret; + + if (check_only) + return 0; + + denali_select_target(chip, op->cs); + /* - * tell driver how many bit controller will skip before - * writing ECC code in OOB, this register may be already - * set by firmware. So we read this value out. - * if this value is 0, just let it be. + * Some commands contain NAND_OP_WAITRDY_INSTR. + * irq must be cleared here to catch the R/B# interrupt there. */ - denali->bbtskipbytes = ioread32(denali->flash_reg + - SPARE_AREA_SKIP_BYTES); - detect_max_banks(denali); - denali_nand_reset(denali); - iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); - iowrite32(CHIP_EN_DONT_CARE__FLAG, - denali->flash_reg + CHIP_ENABLE_DONT_CARE); - - iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); - - /* Should set value for these registers when init */ - iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); - iowrite32(1, denali->flash_reg + ECC_ENABLE); - denali_nand_timing_set(denali); - denali_irq_init(denali); -} + denali_reset_irq(to_denali_controller(chip)); -/* - * Althogh controller spec said SLC ECC is forceb to be 4bit, - * but denali controller in MRST only support 15bit and 8bit ECC - * correction - */ -#define ECC_8BITS 14 -static struct nand_ecclayout nand_8bit_oob = { - .eccbytes = 14, -}; + for (i = 0; i < op->ninstrs; i++) { + ret = denali_exec_instr(chip, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} -#define ECC_15BITS 26 -static struct nand_ecclayout nand_15bit_oob = { - .eccbytes = 26, +static const struct nand_controller_ops denali_controller_ops = { + .attach_chip = denali_attach_chip, + .exec_op = denali_exec_op, + .setup_interface = denali_setup_interface, }; -/* initialize driver data structures */ -static void denali_drv_init(struct denali_nand_info *denali) +int denali_chip_init(struct denali_controller *denali, + struct denali_chip *dchip) { - denali->idx = 0; - - /* indicate that MTD has not selected a valid bank yet */ - denali->flash_bank = CHIP_SELECT_INVALID; + struct nand_chip *chip = &dchip->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct denali_chip *dchip2; + int i, j, ret; - /* initialize our irq_status variable to indicate no interrupts */ - denali->irq_status = 0; -} + chip->controller = &denali->controller; -int denali_init(struct denali_nand_info *denali) -{ - struct nand_chip *nand = &denali->nand; - struct mtd_info *mtd = nand_to_mtd(nand); - int ret = 0; - uint32_t val; - struct nand_ecclayout *ecclayout; + /* sanity checks for bank numbers */ + for (i = 0; i < dchip->nsels; i++) { + unsigned int bank = dchip->sels[i].bank; - if (denali->platform == INTEL_CE4100) { - /* - * Due to a silicon limitation, we can only support - * ONFI timing mode 1 and below. - */ - if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { - pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); + if (bank >= denali->nbanks) { + dev_err(denali->dev, "unsupported bank %d\n", bank); return -EINVAL; } - } - - /* allocate a temporary buffer for nand_scan_ident() */ - denali->buf.buf = kzalloc(PAGE_SIZE, GFP_KERNEL); - if (!denali->buf.buf) - return -ENOMEM; - mtd->dev.parent = denali->dev; - denali_hw_init(denali); - denali_drv_init(denali); + for (j = 0; j < i; j++) { + if (bank == dchip->sels[j].bank) { + dev_err(denali->dev, + "bank %d is assigned twice in the same chip\n", + bank); + return -EINVAL; + } + } - denali_set_intr_modes(denali, true); - mtd->name = "denali-nand"; + list_for_each_entry(dchip2, &denali->chips, node) { + for (j = 0; j < dchip2->nsels; j++) { + if (bank == dchip2->sels[j].bank) { + dev_err(denali->dev, + "bank %d is already used\n", + bank); + return -EINVAL; + } + } + } + } - /* register the driver with the NAND core subsystem */ - nand->legacy.read_buf = denali_read_buf; - nand->legacy.select_chip = denali_select_chip; - nand->legacy.cmdfunc = denali_cmdfunc; - nand->legacy.read_byte = denali_read_byte; - nand->legacy.waitfunc = denali_waitfunc; + mtd->dev.parent = denali->dev; /* - * scan for NAND devices attached to the controller - * this is the first stage in a two step process to register - * with the nand subsystem + * Fallback to the default name if DT did not give "label" property. + * Use "label" property if multiple chips are connected. */ - if (nand_scan_ident(nand, denali->max_banks, NULL)) { - ret = -ENXIO; - goto failed_req_irq; - } + if (!mtd->name && list_empty(&denali->chips)) + mtd->name = "denali-nand"; - /* allocate the right size buffer now */ - kfree(denali->buf.buf); - denali->buf.buf = kzalloc(mtd->writesize + mtd->oobsize, - GFP_KERNEL); - if (!denali->buf.buf) { - ret = -ENOMEM; - goto failed_req_irq; + if (denali->dma_avail) { + chip->options |= NAND_USES_DMA; + chip->buf_align = 16; } - /* - * support for multi nand - * MTD known nothing about multi nand, so we should tell it - * the real pagesize and anything necessery - */ - denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); - if (denali->devnum != 1) { - ret = -EINVAL; - dev_err(denali->dev, - "Multiple devices (%d) detected, not yet supported\n", - denali->devnum); - goto failed_req_irq; + /* clk rate info is needed for setup_interface */ + if (!denali->clk_rate || !denali->clk_x_rate) + chip->options |= NAND_KEEP_TIMINGS; + + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->bbt_options |= NAND_BBT_NO_OOB; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->ecc.mode = NAND_ECC_HW_SYNDROME; + chip->ecc.read_page = denali_read_page; + chip->ecc.write_page = denali_write_page; + chip->ecc.read_page_raw = denali_read_page_raw; + chip->ecc.write_page_raw = denali_write_page_raw; + chip->ecc.read_oob = denali_read_oob; + chip->ecc.write_oob = denali_write_oob; + + mtd_set_ooblayout(mtd, &denali_ooblayout_ops); + + ret = nand_scan(chip, dchip->nsels); + if (ret) + return ret; + + ret = add_mtd_nand_device(mtd, "nand"); + if (ret) { + dev_err(denali->dev, "Failed to register MTD: %d\n", ret); + goto cleanup_nand; } + list_add_tail(&dchip->node, &denali->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} +EXPORT_SYMBOL_GPL(denali_chip_init); + +int denali_init(struct denali_controller *denali) +{ + u32 features = ioread32(denali->reg + FEATURES); + + nand_controller_init(&denali->controller); + denali->controller.ops = &denali_controller_ops; + spin_lock_init(&denali->irq_lock); + INIT_LIST_HEAD(&denali->chips); + denali->active_bank = DENALI_INVALID_BANK; + /* - * second stage of the NAND scan - * this stage requires information regarding ECC and - * bad block management. + * The REVISION register may not be reliable. Platforms are allowed to + * override it. */ + if (!denali->revision) + denali->revision = swab16(ioread32(denali->reg + REVISION)); - /* Bad block table description is set by nand framework, - see nand_bbt.c */ + denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features); - nand->bbt_options |= NAND_BBT_USE_FLASH; - nand->ecc.mode = NAND_ECC_HW_SYNDROME; - if (denali->have_hw_ecc_fixup) { - /* We have OOB support, so allow scan of BBT - and leave the OOB alone */ - nand->bbt_options |= NAND_BBT_NO_OOB; - } else { - /* skip the scan for now until we have OOB read and write support */ - nand->options |= NAND_SKIP_BBTSCAN; - } + /* the encoding changed from rev 5.0 to 5.1 */ + if (denali->revision < 0x0501) + denali->nbanks <<= 1; - /* no subpage writes on denali */ - nand->options |= NAND_NO_SUBPAGE_WRITE; + if (features & FEATURES__DMA) + denali->dma_avail = true; - /* - * Denali Controller only support 15bit and 8bit ECC in MRST, - * so just let controller do 15bit ECC for MLC and 8bit ECC for - * SLC if possible. - * */ - if (!nand_is_slc(&denali->nand) && - (mtd->oobsize > (denali->bbtskipbytes + - ECC_15BITS * (mtd->writesize / - ECC_SECTOR_SIZE)))) { - /* if MLC OOB size is large enough, use 15bit ECC*/ - nand->ecc.strength = 15; - ecclayout = &nand_15bit_oob; - nand->ecc.bytes = ECC_15BITS; - iowrite32(15, denali->flash_reg + ECC_CORRECTION); - } else if (mtd->oobsize < (denali->bbtskipbytes + - ECC_8BITS * (mtd->writesize / - ECC_SECTOR_SIZE))) { - pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes"); - goto failed_req_irq; - } else { - nand->ecc.strength = 8; - ecclayout = &nand_8bit_oob; - nand->ecc.bytes = ECC_8BITS; - iowrite32(8, denali->flash_reg + ECC_CORRECTION); + if (denali->dma_avail) { + int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; + + dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); } - ecclayout->oobfree[0].offset = - denali->bbtskipbytes + ecclayout->eccbytes; - ecclayout->oobfree[0].length = - mtd->oobsize - ecclayout->eccbytes - - denali->bbtskipbytes; + if (denali->dma_avail) { + if (denali->caps & DENALI_CAP_DMA_64BIT) + denali->setup_dma = denali_setup_dma64; + else + denali->setup_dma = denali_setup_dma32; + } - mtd_set_ecclayout(mtd, ecclayout); + if (features & FEATURES__INDEX_ADDR) { + denali->host_read = denali_indexed_read; + denali->host_write = denali_indexed_write; + } else { + denali->host_read = denali_direct_read; + denali->host_write = denali_direct_write; + } /* - * Let driver know the total blocks number and how many blocks - * contained by each nand chip. blksperchip will help driver to - * know how many blocks is taken by FW. + * Set how many bytes should be skipped before writing data in OOB. + * If a platform requests a non-zero value, set it to the register. + * Otherwise, read the value out, expecting it has already been set up + * by firmware. */ - denali->totalblks = mtd->size >> nand->phys_erase_shift; - denali->blksperchip = denali->totalblks; - - /* override the default read operations */ - nand->ecc.size = ECC_SECTOR_SIZE; - nand->ecc.read_page = denali_read_page; - nand->ecc.read_page_raw = denali_read_page_raw; - nand->ecc.write_page = denali_write_page; - nand->ecc.write_page_raw = denali_write_page_raw; - nand->ecc.read_oob = denali_read_oob; - nand->ecc.write_oob = denali_write_oob; - - /* Occasionally the controller is in SPARE or MAIN+SPARE - mode upon startup, and we want it to be MAIN only */ - val = ioread32(denali->flash_reg + TRANSFER_MODE); - if (val != 0) { - int i; - dev_dbg(denali->dev, - "setting TRANSFER_MODE (%08x) back to MAIN only\n", val); - /* put all banks in MAIN mode, no SPARE */ - iowrite32(0, denali->flash_reg + TRANSFER_SPARE_REG); - for (i = 0; i < 4; i++) - index_addr(denali, MODE_10 | BANK(i) | 1, - MAIN_ACCESS); - } + if (denali->oob_skip_bytes) + iowrite32(denali->oob_skip_bytes, + denali->reg + SPARE_AREA_SKIP_BYTES); + else + denali->oob_skip_bytes = ioread32(denali->reg + + SPARE_AREA_SKIP_BYTES); - if (nand_scan_tail(nand)) { - ret = -ENXIO; - goto failed_req_irq; - } + iowrite32(0, denali->reg + TRANSFER_SPARE_REG); + iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); + iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); + iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); + iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT); - return add_mtd_nand_device(mtd, "nand"); + denali_clear_irq_all(denali); -failed_req_irq: - denali_irq_cleanup(denali->irq, denali); + denali_enable_irq(denali); - return ret; + return 0; } EXPORT_SYMBOL(denali_init); - -MODULE_AUTHOR("Intel Corporation"); -MODULE_DESCRIPTION(""); -MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Driver core for Denali NAND controller"); +MODULE_AUTHOR("Intel Corporation and its suppliers"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/nand_denali_dt.c b/drivers/mtd/nand/nand_denali_dt.c index e3024549cd..1a32987da0 100644 --- a/drivers/mtd/nand/nand_denali_dt.c +++ b/drivers/mtd/nand/nand_denali_dt.c @@ -24,58 +24,115 @@ #include <errno.h> #include <linux/clk.h> +#include <linux/spinlock.h> #include "denali.h" struct denali_dt { - struct denali_nand_info denali; + struct denali_controller denali; struct clk *clk; }; +struct denali_dt_data { + unsigned int revision; + unsigned int caps; + unsigned int oob_skip_bytes; + const struct nand_ecc_caps *ecc_caps; +}; + +NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes, + 512, 8, 15); +static const struct denali_dt_data denali_socfpga_data = { + .caps = DENALI_CAP_HW_ECC_FIXUP, + .oob_skip_bytes = 2, + .ecc_caps = &denali_socfpga_ecc_caps, +}; + +static int denali_dt_chip_init(struct denali_controller *denali, + struct device_node *chip_np) +{ + struct denali_chip *dchip; + u32 bank; + int nsels, i, ret; + + nsels = of_property_count_elems_of_size(chip_np, "reg", sizeof(u32)); + if (nsels < 0) + return nsels; + + dchip = xzalloc(sizeof(*dchip) + sizeof(struct denali_chip_sel) *nsels); + + dchip->nsels = nsels; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(chip_np, "reg", i, &bank); + if (ret) + return ret; + + dchip->sels[i].bank = bank; + + nand_set_flash_node(&dchip->chip, chip_np); + } + + return denali_chip_init(denali, dchip); +} static int denali_dt_probe(struct device_d *ofdev) { struct resource *iores; struct denali_dt *dt; - struct denali_nand_info *denali; + struct denali_controller *denali; + struct denali_dt_data *data; + struct device_node *np; int ret; if (!IS_ENABLED(CONFIG_OFDEVICE)) return 1; + ret = dev_get_drvdata(ofdev, (const void **)&data); + if (ret) + return ret; + dt = kzalloc(sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; denali = &dt->denali; - denali->platform = DT; denali->dev = ofdev; iores = dev_request_mem_resource(ofdev, 0); if (IS_ERR(iores)) return PTR_ERR(iores); - denali->flash_mem = IOMEM(iores->start); + denali->host = IOMEM(iores->start); iores = dev_request_mem_resource(ofdev, 1); if (IS_ERR(iores)) return PTR_ERR(iores); - denali->flash_reg = IOMEM(iores->start); + denali->reg = IOMEM(iores->start); dt->clk = clk_get(ofdev, NULL); if (IS_ERR(dt->clk)) { dev_err(ofdev, "no clk available\n"); return PTR_ERR(dt->clk); } + clk_enable(dt->clk); - denali->have_hw_ecc_fixup = of_property_read_bool(ofdev->device_node, - "have-hw-ecc-fixup"); + denali->revision = data->revision; + denali->caps = data->caps; + denali->oob_skip_bytes = data->oob_skip_bytes; + denali->ecc_caps = data->ecc_caps; ret = denali_init(denali); if (ret) goto out_disable_clk; + for_each_child_of_node(ofdev->device_node, np) { + ret = denali_dt_chip_init(denali, np); + if (ret) + goto out_disable_clk; + } + return 0; out_disable_clk: @@ -86,7 +143,8 @@ out_disable_clk: static __maybe_unused struct of_device_id denali_nand_compatible[] = { { - .compatible = "altr,socfpga-denali-nand" + .compatible = "altr,socfpga-denali-nand", + .data = &denali_socfpga_data, }, { /* sentinel */ } -- 2.20.1 _______________________________________________ barebox mailing list barebox@xxxxxxxxxxxxxxxxxxx http://lists.infradead.org/mailman/listinfo/barebox