diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu index a5225df4a070..22c078d1a23b 100644 --- a/Documentation/ABI/testing/sysfs-devices-system-cpu +++ b/Documentation/ABI/testing/sysfs-devices-system-cpu @@ -361,6 +361,7 @@ What: /sys/devices/system/cpu/vulnerabilities /sys/devices/system/cpu/vulnerabilities/srbds /sys/devices/system/cpu/vulnerabilities/tsx_async_abort /sys/devices/system/cpu/vulnerabilities/itlb_multihit + /sys/devices/system/cpu/vulnerabilities/mmio_stale_data Date: January 2018 Contact: Linux kernel mailing list <linux-kernel@xxxxxxxxxxxxxxx> Description: Information about CPU vulnerabilities diff --git a/Documentation/hw-vuln/index.rst b/Documentation/hw-vuln/index.rst index 74466ba80167..608afc966776 100644 --- a/Documentation/hw-vuln/index.rst +++ b/Documentation/hw-vuln/index.rst @@ -15,3 +15,4 @@ are configurable at compile, boot or run time. tsx_async_abort multihit special-register-buffer-data-sampling + processor_mmio_stale_data diff --git a/Documentation/hw-vuln/processor_mmio_stale_data.rst b/Documentation/hw-vuln/processor_mmio_stale_data.rst new file mode 100644 index 000000000000..9393c50b5afc --- /dev/null +++ b/Documentation/hw-vuln/processor_mmio_stale_data.rst @@ -0,0 +1,246 @@ +========================================= +Processor MMIO Stale Data Vulnerabilities +========================================= + +Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O +(MMIO) vulnerabilities that can expose data. The sequences of operations for +exposing data range from simple to very complex. Because most of the +vulnerabilities require the attacker to have access to MMIO, many environments +are not affected. System environments using virtualization where MMIO access is +provided to untrusted guests may need mitigation. These vulnerabilities are +not transient execution attacks. However, these vulnerabilities may propagate +stale data into core fill buffers where the data can subsequently be inferred +by an unmitigated transient execution attack. Mitigation for these +vulnerabilities includes a combination of microcode update and software +changes, depending on the platform and usage model. Some of these mitigations +are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or +those used to mitigate Special Register Buffer Data Sampling (SRBDS). + +Data Propagators +================ +Propagators are operations that result in stale data being copied or moved from +one microarchitectural buffer or register to another. Processor MMIO Stale Data +Vulnerabilities are operations that may result in stale data being directly +read into an architectural, software-visible state or sampled from a buffer or +register. + +Fill Buffer Stale Data Propagator (FBSDP) +----------------------------------------- +Stale data may propagate from fill buffers (FB) into the non-coherent portion +of the uncore on some non-coherent writes. Fill buffer propagation by itself +does not make stale data architecturally visible. Stale data must be propagated +to a location where it is subject to reading or sampling. + +Sideband Stale Data Propagator (SSDP) +------------------------------------- +The sideband stale data propagator (SSDP) is limited to the client (including +Intel Xeon server E3) uncore implementation. The sideband response buffer is +shared by all client cores. For non-coherent reads that go to sideband +destinations, the uncore logic returns 64 bytes of data to the core, including +both requested data and unrequested stale data, from a transaction buffer and +the sideband response buffer. As a result, stale data from the sideband +response and transaction buffers may now reside in a core fill buffer. + +Primary Stale Data Propagator (PSDP) +------------------------------------ +The primary stale data propagator (PSDP) is limited to the client (including +Intel Xeon server E3) uncore implementation. Similar to the sideband response +buffer, the primary response buffer is shared by all client cores. For some +processors, MMIO primary reads will return 64 bytes of data to the core fill +buffer including both requested data and unrequested stale data. This is +similar to the sideband stale data propagator. + +Vulnerabilities +=============== +Device Register Partial Write (DRPW) (CVE-2022-21166) +----------------------------------------------------- +Some endpoint MMIO registers incorrectly handle writes that are smaller than +the register size. Instead of aborting the write or only copying the correct +subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than +specified by the write transaction may be written to the register. On +processors affected by FBSDP, this may expose stale data from the fill buffers +of the core that created the write transaction. + +Shared Buffers Data Sampling (SBDS) (CVE-2022-21125) +---------------------------------------------------- +After propagators may have moved data around the uncore and copied stale data +into client core fill buffers, processors affected by MFBDS can leak data from +the fill buffer. It is limited to the client (including Intel Xeon server E3) +uncore implementation. + +Shared Buffers Data Read (SBDR) (CVE-2022-21123) +------------------------------------------------ +It is similar to Shared Buffer Data Sampling (SBDS) except that the data is +directly read into the architectural software-visible state. It is limited to +the client (including Intel Xeon server E3) uncore implementation. + +Affected Processors +=================== +Not all the CPUs are affected by all the variants. For instance, most +processors for the server market (excluding Intel Xeon E3 processors) are +impacted by only Device Register Partial Write (DRPW). + +Below is the list of affected Intel processors [#f1]_: + + =================== ============ ========= + Common name Family_Model Steppings + =================== ============ ========= + HASWELL_X 06_3FH 2,4 + SKYLAKE_L 06_4EH 3 + BROADWELL_X 06_4FH All + SKYLAKE_X 06_55H 3,4,6,7,11 + BROADWELL_D 06_56H 3,4,5 + SKYLAKE 06_5EH 3 + ICELAKE_X 06_6AH 4,5,6 + ICELAKE_D 06_6CH 1 + ICELAKE_L 06_7EH 5 + ATOM_TREMONT_D 06_86H All + LAKEFIELD 06_8AH 1 + KABYLAKE_L 06_8EH 9 to 12 + ATOM_TREMONT 06_96H 1 + ATOM_TREMONT_L 06_9CH 0 + KABYLAKE 06_9EH 9 to 13 + COMETLAKE 06_A5H 2,3,5 + COMETLAKE_L 06_A6H 0,1 + ROCKETLAKE 06_A7H 1 + =================== ============ ========= + +If a CPU is in the affected processor list, but not affected by a variant, it +is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later +section, mitigation largely remains the same for all the variants, i.e. to +clear the CPU fill buffers via VERW instruction. + +New bits in MSRs +================ +Newer processors and microcode update on existing affected processors added new +bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate +specific variants of Processor MMIO Stale Data vulnerabilities and mitigation +capability. + +MSR IA32_ARCH_CAPABILITIES +-------------------------- +Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the + Shared Buffers Data Read (SBDR) vulnerability or the sideband stale + data propagator (SSDP). +Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer + Stale Data Propagator (FBSDP). +Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data + Propagator (PSDP). +Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer + values as part of MD_CLEAR operations. Processors that do not + enumerate MDS_NO (meaning they are affected by MDS) but that do + enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate + FB_CLEAR as part of their MD_CLEAR support. +Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR + IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS + bit can be set to cause the VERW instruction to not perform the + FB_CLEAR action. Not all processors that support FB_CLEAR will support + FB_CLEAR_CTRL. + +MSR IA32_MCU_OPT_CTRL +--------------------- +Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR +action. This may be useful to reduce the performance impact of FB_CLEAR in +cases where system software deems it warranted (for example, when performance +is more critical, or the untrusted software has no MMIO access). Note that +FB_CLEAR_DIS has no impact on enumeration (for example, it does not change +FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors +that enumerate FB_CLEAR. + +Mitigation +========== +Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the +same mitigation strategy to force the CPU to clear the affected buffers before +an attacker can extract the secrets. + +This is achieved by using the otherwise unused and obsolete VERW instruction in +combination with a microcode update. The microcode clears the affected CPU +buffers when the VERW instruction is executed. + +Kernel reuses the MDS function to invoke the buffer clearing: + + mds_clear_cpu_buffers() + +On MDS affected CPUs, the kernel already invokes CPU buffer clear on +kernel/userspace, hypervisor/guest and C-state (idle) transitions. No +additional mitigation is needed on such CPUs. + +For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker +with MMIO capability. Therefore, VERW is not required for kernel/userspace. For +virtualization case, VERW is only needed at VMENTER for a guest with MMIO +capability. + +Mitigation points +----------------- +Return to user space +^^^^^^^^^^^^^^^^^^^^ +Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation +needed. + +C-State transition +^^^^^^^^^^^^^^^^^^ +Control register writes by CPU during C-state transition can propagate data +from fill buffer to uncore buffers. Execute VERW before C-state transition to +clear CPU fill buffers. + +Guest entry point +^^^^^^^^^^^^^^^^^ +Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise +execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by +MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO +Stale Data vulnerabilities, so there is no need to execute VERW for such guests. + +Mitigation control on the kernel command line +--------------------------------------------- +The kernel command line allows to control the Processor MMIO Stale Data +mitigations at boot time with the option "mmio_stale_data=". The valid +arguments for this option are: + + ========== ================================================================= + full If the CPU is vulnerable, enable mitigation; CPU buffer clearing + on exit to userspace and when entering a VM. Idle transitions are + protected as well. It does not automatically disable SMT. + full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the + complete mitigation. + off Disables mitigation completely. + ========== ================================================================= + +If the CPU is affected and mmio_stale_data=off is not supplied on the kernel +command line, then the kernel selects the appropriate mitigation. + +Mitigation status information +----------------------------- +The Linux kernel provides a sysfs interface to enumerate the current +vulnerability status of the system: whether the system is vulnerable, and +which mitigations are active. The relevant sysfs file is: + + /sys/devices/system/cpu/vulnerabilities/mmio_stale_data + +The possible values in this file are: + + .. list-table:: + + * - 'Not affected' + - The processor is not vulnerable + * - 'Vulnerable' + - The processor is vulnerable, but no mitigation enabled + * - 'Vulnerable: Clear CPU buffers attempted, no microcode' + - The processor is vulnerable, but microcode is not updated. The + mitigation is enabled on a best effort basis. + * - 'Mitigation: Clear CPU buffers' + - The processor is vulnerable and the CPU buffer clearing mitigation is + enabled. + +If the processor is vulnerable then the following information is appended to +the above information: + + ======================== =========================================== + 'SMT vulnerable' SMT is enabled + 'SMT disabled' SMT is disabled + 'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown + ======================== =========================================== + +References +---------- +.. [#f1] Affected Processors + https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index f2b10986ab88..97c0ff0787ea 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -2520,6 +2520,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted. kvm.nx_huge_pages=off [X86] no_entry_flush [PPC] no_uaccess_flush [PPC] + mmio_stale_data=off [X86] Exceptions: This does not have any effect on @@ -2541,6 +2542,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted. Equivalent to: l1tf=flush,nosmt [X86] mds=full,nosmt [X86] tsx_async_abort=full,nosmt [X86] + mmio_stale_data=full,nosmt [X86] mminit_loglevel= [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this @@ -2550,6 +2552,40 @@ bytes respectively. Such letter suffixes can also be entirely omitted. log everything. Information is printed at KERN_DEBUG so loglevel=8 may also need to be specified. + mmio_stale_data= + [X86,INTEL] Control mitigation for the Processor + MMIO Stale Data vulnerabilities. + + Processor MMIO Stale Data is a class of + vulnerabilities that may expose data after an MMIO + operation. Exposed data could originate or end in + the same CPU buffers as affected by MDS and TAA. + Therefore, similar to MDS and TAA, the mitigation + is to clear the affected CPU buffers. + + This parameter controls the mitigation. The + options are: + + full - Enable mitigation on vulnerable CPUs + + full,nosmt - Enable mitigation and disable SMT on + vulnerable CPUs. + + off - Unconditionally disable mitigation + + On MDS or TAA affected machines, + mmio_stale_data=off can be prevented by an active + MDS or TAA mitigation as these vulnerabilities are + mitigated with the same mechanism so in order to + disable this mitigation, you need to specify + mds=off and tsx_async_abort=off too. + + Not specifying this option is equivalent to + mmio_stale_data=full. + + For details see: + Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst + module.sig_enforce [KNL] When CONFIG_MODULE_SIG is set, this means that modules without (valid) signatures will fail to load. diff --git a/Makefile b/Makefile index 46bea19a6c96..bf4a7b0fe8e7 100644 --- a/Makefile +++ b/Makefile @@ -1,6 +1,6 @@ VERSION = 4 PATCHLEVEL = 9 -SUBLEVEL = 318 +SUBLEVEL = 319 EXTRAVERSION = NAME = Roaring Lionus diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h index 5b197248d546..910304aec2e6 100644 --- a/arch/x86/include/asm/cpufeatures.h +++ b/arch/x86/include/asm/cpufeatures.h @@ -362,5 +362,6 @@ #define X86_BUG_TAA X86_BUG(22) /* CPU is affected by TSX Async Abort(TAA) */ #define X86_BUG_ITLB_MULTIHIT X86_BUG(23) /* CPU may incur MCE during certain page attribute changes */ #define X86_BUG_SRBDS X86_BUG(24) /* CPU may leak RNG bits if not mitigated */ +#define X86_BUG_MMIO_STALE_DATA X86_BUG(25) /* CPU is affected by Processor MMIO Stale Data vulnerabilities */ #endif /* _ASM_X86_CPUFEATURES_H */ diff --git a/arch/x86/include/asm/intel-family.h b/arch/x86/include/asm/intel-family.h index 74ee597beb3e..8b6c01774ca2 100644 --- a/arch/x86/include/asm/intel-family.h +++ b/arch/x86/include/asm/intel-family.h @@ -9,6 +9,10 @@ * * Things ending in "2" are usually because we have no better * name for them. There's no processor called "SILVERMONT2". + * + * While adding a new CPUID for a new microarchitecture, add a new + * group to keep logically sorted out in chronological order. Within + * that group keep the CPUID for the variants sorted by model number. */ #define INTEL_FAM6_CORE_YONAH 0x0E @@ -48,6 +52,24 @@ #define INTEL_FAM6_KABYLAKE_MOBILE 0x8E #define INTEL_FAM6_KABYLAKE_DESKTOP 0x9E +#define INTEL_FAM6_CANNONLAKE_MOBILE 0x66 + +#define INTEL_FAM6_ICELAKE_X 0x6A +#define INTEL_FAM6_ICELAKE_XEON_D 0x6C +#define INTEL_FAM6_ICELAKE_DESKTOP 0x7D +#define INTEL_FAM6_ICELAKE_MOBILE 0x7E + +#define INTEL_FAM6_COMETLAKE 0xA5 +#define INTEL_FAM6_COMETLAKE_L 0xA6 + +#define INTEL_FAM6_ROCKETLAKE 0xA7 + +/* Hybrid Core/Atom Processors */ + +#define INTEL_FAM6_LAKEFIELD 0x8A +#define INTEL_FAM6_ALDERLAKE 0x97 +#define INTEL_FAM6_ALDERLAKE_L 0x9A + /* "Small Core" Processors (Atom) */ #define INTEL_FAM6_ATOM_BONNELL 0x1C /* Diamondville, Pineview */ @@ -67,7 +89,10 @@ #define INTEL_FAM6_ATOM_GOLDMONT 0x5C /* Apollo Lake */ #define INTEL_FAM6_ATOM_GOLDMONT_X 0x5F /* Denverton */ #define INTEL_FAM6_ATOM_GOLDMONT_PLUS 0x7A /* Gemini Lake */ + #define INTEL_FAM6_ATOM_TREMONT_X 0x86 /* Jacobsville */ +#define INTEL_FAM6_ATOM_TREMONT 0x96 /* Elkhart Lake */ +#define INTEL_FAM6_ATOM_TREMONT_L 0x9C /* Jasper Lake */ /* Xeon Phi */ diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h index 1fdea3c334e7..5131146e1bd8 100644 --- a/arch/x86/include/asm/msr-index.h +++ b/arch/x86/include/asm/msr-index.h @@ -89,6 +89,30 @@ * Not susceptible to * TSX Async Abort (TAA) vulnerabilities. */ +#define ARCH_CAP_SBDR_SSDP_NO BIT(13) /* + * Not susceptible to SBDR and SSDP + * variants of Processor MMIO stale data + * vulnerabilities. + */ +#define ARCH_CAP_FBSDP_NO BIT(14) /* + * Not susceptible to FBSDP variant of + * Processor MMIO stale data + * vulnerabilities. + */ +#define ARCH_CAP_PSDP_NO BIT(15) /* + * Not susceptible to PSDP variant of + * Processor MMIO stale data + * vulnerabilities. + */ +#define ARCH_CAP_FB_CLEAR BIT(17) /* + * VERW clears CPU fill buffer + * even on MDS_NO CPUs. + */ +#define ARCH_CAP_FB_CLEAR_CTRL BIT(18) /* + * MSR_IA32_MCU_OPT_CTRL[FB_CLEAR_DIS] + * bit available to control VERW + * behavior. + */ #define MSR_IA32_FLUSH_CMD 0x0000010b #define L1D_FLUSH BIT(0) /* @@ -106,6 +130,7 @@ /* SRBDS support */ #define MSR_IA32_MCU_OPT_CTRL 0x00000123 #define RNGDS_MITG_DIS BIT(0) +#define FB_CLEAR_DIS BIT(3) /* CPU Fill buffer clear disable */ #define MSR_IA32_SYSENTER_CS 0x00000174 #define MSR_IA32_SYSENTER_ESP 0x00000175 diff --git a/arch/x86/include/asm/nospec-branch.h b/arch/x86/include/asm/nospec-branch.h index 19829b00e4fe..8a618fbf569f 100644 --- a/arch/x86/include/asm/nospec-branch.h +++ b/arch/x86/include/asm/nospec-branch.h @@ -323,6 +323,8 @@ DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb); DECLARE_STATIC_KEY_FALSE(mds_user_clear); DECLARE_STATIC_KEY_FALSE(mds_idle_clear); +DECLARE_STATIC_KEY_FALSE(mmio_stale_data_clear); + #include <asm/segment.h> /** diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c index 94aa0206b1f9..b4416df41d63 100644 --- a/arch/x86/kernel/cpu/bugs.c +++ b/arch/x86/kernel/cpu/bugs.c @@ -39,8 +39,10 @@ static void __init spectre_v2_select_mitigation(void); static void __init ssb_select_mitigation(void); static void __init l1tf_select_mitigation(void); static void __init mds_select_mitigation(void); -static void __init mds_print_mitigation(void); +static void __init md_clear_update_mitigation(void); +static void __init md_clear_select_mitigation(void); static void __init taa_select_mitigation(void); +static void __init mmio_select_mitigation(void); static void __init srbds_select_mitigation(void); /* The base value of the SPEC_CTRL MSR that always has to be preserved. */ @@ -75,6 +77,10 @@ EXPORT_SYMBOL_GPL(mds_user_clear); DEFINE_STATIC_KEY_FALSE(mds_idle_clear); EXPORT_SYMBOL_GPL(mds_idle_clear); +/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ +DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); +EXPORT_SYMBOL_GPL(mmio_stale_data_clear); + void __init check_bugs(void) { identify_boot_cpu(); @@ -107,16 +113,9 @@ void __init check_bugs(void) spectre_v2_select_mitigation(); ssb_select_mitigation(); l1tf_select_mitigation(); - mds_select_mitigation(); - taa_select_mitigation(); + md_clear_select_mitigation(); srbds_select_mitigation(); - /* - * As MDS and TAA mitigations are inter-related, print MDS - * mitigation until after TAA mitigation selection is done. - */ - mds_print_mitigation(); - arch_smt_update(); #ifdef CONFIG_X86_32 @@ -256,14 +255,6 @@ static void __init mds_select_mitigation(void) } } -static void __init mds_print_mitigation(void) -{ - if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) - return; - - pr_info("%s\n", mds_strings[mds_mitigation]); -} - static int __init mds_cmdline(char *str) { if (!boot_cpu_has_bug(X86_BUG_MDS)) @@ -311,7 +302,7 @@ static void __init taa_select_mitigation(void) /* TSX previously disabled by tsx=off */ if (!boot_cpu_has(X86_FEATURE_RTM)) { taa_mitigation = TAA_MITIGATION_TSX_DISABLED; - goto out; + return; } if (cpu_mitigations_off()) { @@ -325,7 +316,7 @@ static void __init taa_select_mitigation(void) */ if (taa_mitigation == TAA_MITIGATION_OFF && mds_mitigation == MDS_MITIGATION_OFF) - goto out; + return; if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) taa_mitigation = TAA_MITIGATION_VERW; @@ -357,18 +348,6 @@ static void __init taa_select_mitigation(void) if (taa_nosmt || cpu_mitigations_auto_nosmt()) cpu_smt_disable(false); - - /* - * Update MDS mitigation, if necessary, as the mds_user_clear is - * now enabled for TAA mitigation. - */ - if (mds_mitigation == MDS_MITIGATION_OFF && - boot_cpu_has_bug(X86_BUG_MDS)) { - mds_mitigation = MDS_MITIGATION_FULL; - mds_select_mitigation(); - } -out: - pr_info("%s\n", taa_strings[taa_mitigation]); } static int __init tsx_async_abort_parse_cmdline(char *str) @@ -392,6 +371,151 @@ static int __init tsx_async_abort_parse_cmdline(char *str) } early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); +#undef pr_fmt +#define pr_fmt(fmt) "MMIO Stale Data: " fmt + +enum mmio_mitigations { + MMIO_MITIGATION_OFF, + MMIO_MITIGATION_UCODE_NEEDED, + MMIO_MITIGATION_VERW, +}; + +/* Default mitigation for Processor MMIO Stale Data vulnerabilities */ +static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; +static bool mmio_nosmt __ro_after_init = false; + +static const char * const mmio_strings[] = { + [MMIO_MITIGATION_OFF] = "Vulnerable", + [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", + [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", +}; + +static void __init mmio_select_mitigation(void) +{ + u64 ia32_cap; + + if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || + cpu_mitigations_off()) { + mmio_mitigation = MMIO_MITIGATION_OFF; + return; + } + + if (mmio_mitigation == MMIO_MITIGATION_OFF) + return; + + ia32_cap = x86_read_arch_cap_msr(); + + /* + * Enable CPU buffer clear mitigation for host and VMM, if also affected + * by MDS or TAA. Otherwise, enable mitigation for VMM only. + */ + if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && + boot_cpu_has(X86_FEATURE_RTM))) + static_branch_enable(&mds_user_clear); + else + static_branch_enable(&mmio_stale_data_clear); + + /* + * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can + * be propagated to uncore buffers, clearing the Fill buffers on idle + * is required irrespective of SMT state. + */ + if (!(ia32_cap & ARCH_CAP_FBSDP_NO)) + static_branch_enable(&mds_idle_clear); + + /* + * Check if the system has the right microcode. + * + * CPU Fill buffer clear mitigation is enumerated by either an explicit + * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS + * affected systems. + */ + if ((ia32_cap & ARCH_CAP_FB_CLEAR) || + (boot_cpu_has(X86_FEATURE_MD_CLEAR) && + boot_cpu_has(X86_FEATURE_FLUSH_L1D) && + !(ia32_cap & ARCH_CAP_MDS_NO))) + mmio_mitigation = MMIO_MITIGATION_VERW; + else + mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; + + if (mmio_nosmt || cpu_mitigations_auto_nosmt()) + cpu_smt_disable(false); +} + +static int __init mmio_stale_data_parse_cmdline(char *str) +{ + if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) + return 0; + + if (!str) + return -EINVAL; + + if (!strcmp(str, "off")) { + mmio_mitigation = MMIO_MITIGATION_OFF; + } else if (!strcmp(str, "full")) { + mmio_mitigation = MMIO_MITIGATION_VERW; + } else if (!strcmp(str, "full,nosmt")) { + mmio_mitigation = MMIO_MITIGATION_VERW; + mmio_nosmt = true; + } + + return 0; +} +early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); + +#undef pr_fmt +#define pr_fmt(fmt) "" fmt + +static void __init md_clear_update_mitigation(void) +{ + if (cpu_mitigations_off()) + return; + + if (!static_key_enabled(&mds_user_clear)) + goto out; + + /* + * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data + * mitigation, if necessary. + */ + if (mds_mitigation == MDS_MITIGATION_OFF && + boot_cpu_has_bug(X86_BUG_MDS)) { + mds_mitigation = MDS_MITIGATION_FULL; + mds_select_mitigation(); + } + if (taa_mitigation == TAA_MITIGATION_OFF && + boot_cpu_has_bug(X86_BUG_TAA)) { + taa_mitigation = TAA_MITIGATION_VERW; + taa_select_mitigation(); + } + if (mmio_mitigation == MMIO_MITIGATION_OFF && + boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { + mmio_mitigation = MMIO_MITIGATION_VERW; + mmio_select_mitigation(); + } +out: + if (boot_cpu_has_bug(X86_BUG_MDS)) + pr_info("MDS: %s\n", mds_strings[mds_mitigation]); + if (boot_cpu_has_bug(X86_BUG_TAA)) + pr_info("TAA: %s\n", taa_strings[taa_mitigation]); + if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) + pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); +} + +static void __init md_clear_select_mitigation(void) +{ + mds_select_mitigation(); + taa_select_mitigation(); + mmio_select_mitigation(); + + /* + * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update + * and print their mitigation after MDS, TAA and MMIO Stale Data + * mitigation selection is done. + */ + md_clear_update_mitigation(); +} + #undef pr_fmt #define pr_fmt(fmt) "SRBDS: " fmt @@ -453,11 +577,13 @@ static void __init srbds_select_mitigation(void) return; /* - * Check to see if this is one of the MDS_NO systems supporting - * TSX that are only exposed to SRBDS when TSX is enabled. + * Check to see if this is one of the MDS_NO systems supporting TSX that + * are only exposed to SRBDS when TSX is enabled or when CPU is affected + * by Processor MMIO Stale Data vulnerability. */ ia32_cap = x86_read_arch_cap_msr(); - if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM)) + if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && + !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; @@ -1065,6 +1191,8 @@ static void update_indir_branch_cond(void) /* Update the static key controlling the MDS CPU buffer clear in idle */ static void update_mds_branch_idle(void) { + u64 ia32_cap = x86_read_arch_cap_msr(); + /* * Enable the idle clearing if SMT is active on CPUs which are * affected only by MSBDS and not any other MDS variant. @@ -1076,14 +1204,17 @@ static void update_mds_branch_idle(void) if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) return; - if (sched_smt_active()) + if (sched_smt_active()) { static_branch_enable(&mds_idle_clear); - else + } else if (mmio_mitigation == MMIO_MITIGATION_OFF || + (ia32_cap & ARCH_CAP_FBSDP_NO)) { static_branch_disable(&mds_idle_clear); + } } #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" +#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" void arch_smt_update(void) { @@ -1128,6 +1259,16 @@ void arch_smt_update(void) break; } + switch (mmio_mitigation) { + case MMIO_MITIGATION_VERW: + case MMIO_MITIGATION_UCODE_NEEDED: + if (sched_smt_active()) + pr_warn_once(MMIO_MSG_SMT); + break; + case MMIO_MITIGATION_OFF: + break; + } + mutex_unlock(&spec_ctrl_mutex); } @@ -1681,6 +1822,20 @@ static ssize_t tsx_async_abort_show_state(char *buf) sched_smt_active() ? "vulnerable" : "disabled"); } +static ssize_t mmio_stale_data_show_state(char *buf) +{ + if (mmio_mitigation == MMIO_MITIGATION_OFF) + return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); + + if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { + return sysfs_emit(buf, "%s; SMT Host state unknown\n", + mmio_strings[mmio_mitigation]); + } + + return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], + sched_smt_active() ? "vulnerable" : "disabled"); +} + static char *stibp_state(void) { if (spectre_v2_in_eibrs_mode(spectre_v2_enabled)) @@ -1778,6 +1933,9 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr case X86_BUG_SRBDS: return srbds_show_state(buf); + case X86_BUG_MMIO_STALE_DATA: + return mmio_stale_data_show_state(buf); + default: break; } @@ -1829,4 +1987,9 @@ ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char * { return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); } + +ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) +{ + return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); +} #endif diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c index ff3253b9a879..48843fc76695 100644 --- a/arch/x86/kernel/cpu/common.c +++ b/arch/x86/kernel/cpu/common.c @@ -962,18 +962,42 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { X86_FEATURE_ANY, issues) #define SRBDS BIT(0) +/* CPU is affected by X86_BUG_MMIO_STALE_DATA */ +#define MMIO BIT(1) +/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */ +#define MMIO_SBDS BIT(2) static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_CORE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_ULT, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_GT3E, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(HASWELL_X, BIT(2) | BIT(4), MMIO), + VULNBL_INTEL_STEPPINGS(BROADWELL_XEON_D,X86_STEPPINGS(0x3, 0x5), MMIO), VULNBL_INTEL_STEPPINGS(BROADWELL_GT3E, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO), VULNBL_INTEL_STEPPINGS(BROADWELL_CORE, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE, X86_STEPPINGS(0x3, 0x3), SRBDS | MMIO), VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE, X86_STEPPING_ANY, SRBDS), + VULNBL_INTEL_STEPPINGS(SKYLAKE_X, BIT(3) | BIT(4) | BIT(6) | + BIT(7) | BIT(0xB), MMIO), + VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPINGS(0x3, 0x3), SRBDS | MMIO), VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPING_ANY, SRBDS), - VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x0, 0xC), SRBDS), - VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x0, 0xD), SRBDS), + VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x9, 0xC), SRBDS | MMIO), + VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x0, 0x8), SRBDS), + VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x9, 0xD), SRBDS | MMIO), + VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x0, 0x8), SRBDS), + VULNBL_INTEL_STEPPINGS(ICELAKE_MOBILE, X86_STEPPINGS(0x5, 0x5), MMIO | MMIO_SBDS), + VULNBL_INTEL_STEPPINGS(ICELAKE_XEON_D, X86_STEPPINGS(0x1, 0x1), MMIO), + VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x4, 0x6), MMIO), + VULNBL_INTEL_STEPPINGS(COMETLAKE, BIT(2) | BIT(3) | BIT(5), MMIO | MMIO_SBDS), + VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x1, 0x1), MMIO | MMIO_SBDS), + VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO), + VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPINGS(0x1, 0x1), MMIO | MMIO_SBDS), + VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPINGS(0x1, 0x1), MMIO), + VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPINGS(0x1, 0x1), MMIO | MMIO_SBDS), + VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_X, X86_STEPPING_ANY, MMIO), + VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPINGS(0x0, 0x0), MMIO | MMIO_SBDS), {} }; @@ -994,6 +1018,13 @@ u64 x86_read_arch_cap_msr(void) return ia32_cap; } +static bool arch_cap_mmio_immune(u64 ia32_cap) +{ + return (ia32_cap & ARCH_CAP_FBSDP_NO && + ia32_cap & ARCH_CAP_PSDP_NO && + ia32_cap & ARCH_CAP_SBDR_SSDP_NO); +} + static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) { u64 ia32_cap = x86_read_arch_cap_msr(); @@ -1045,12 +1076,27 @@ static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) /* * SRBDS affects CPUs which support RDRAND or RDSEED and are listed * in the vulnerability blacklist. + * + * Some of the implications and mitigation of Shared Buffers Data + * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as + * SRBDS. */ if ((cpu_has(c, X86_FEATURE_RDRAND) || cpu_has(c, X86_FEATURE_RDSEED)) && - cpu_matches(cpu_vuln_blacklist, SRBDS)) + cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS)) setup_force_cpu_bug(X86_BUG_SRBDS); + /* + * Processor MMIO Stale Data bug enumeration + * + * Affected CPU list is generally enough to enumerate the vulnerability, + * but for virtualization case check for ARCH_CAP MSR bits also, VMM may + * not want the guest to enumerate the bug. + */ + if (cpu_matches(cpu_vuln_blacklist, MMIO) && + !arch_cap_mmio_immune(ia32_cap)) + setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA); + if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) return; diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c index 622e5a7eb7db..c287fcc310b3 100644 --- a/arch/x86/kvm/vmx.c +++ b/arch/x86/kvm/vmx.c @@ -211,6 +211,9 @@ static const struct { #define L1D_CACHE_ORDER 4 static void *vmx_l1d_flush_pages; +/* Control for disabling CPU Fill buffer clear */ +static bool __read_mostly vmx_fb_clear_ctrl_available; + static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) { struct page *page; @@ -794,6 +797,8 @@ struct vcpu_vmx { */ u64 msr_ia32_feature_control; u64 msr_ia32_feature_control_valid_bits; + u64 msr_ia32_mcu_opt_ctrl; + bool disable_fb_clear; }; enum segment_cache_field { @@ -1573,6 +1578,60 @@ static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa) : : "a" (&operand), "c" (ext) : "cc", "memory"); } +static void vmx_setup_fb_clear_ctrl(void) +{ + u64 msr; + + if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) && + !boot_cpu_has_bug(X86_BUG_MDS) && + !boot_cpu_has_bug(X86_BUG_TAA)) { + rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); + if (msr & ARCH_CAP_FB_CLEAR_CTRL) + vmx_fb_clear_ctrl_available = true; + } +} + +static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) +{ + u64 msr; + + if (!vmx->disable_fb_clear) + return; + + rdmsrl(MSR_IA32_MCU_OPT_CTRL, msr); + msr |= FB_CLEAR_DIS; + wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); + /* Cache the MSR value to avoid reading it later */ + vmx->msr_ia32_mcu_opt_ctrl = msr; +} + +static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) +{ + if (!vmx->disable_fb_clear) + return; + + vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; + wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); +} + +static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) +{ + vmx->disable_fb_clear = vmx_fb_clear_ctrl_available; + + /* + * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS + * at VMEntry. Skip the MSR read/write when a guest has no use case to + * execute VERW. + */ + if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || + ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && + (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && + (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && + (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && + (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) + vmx->disable_fb_clear = false; +} + static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) { int i; @@ -3407,9 +3466,13 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) } break; } - ret = kvm_set_msr_common(vcpu, msr_info); + ret = kvm_set_msr_common(vcpu, msr_info); } + /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ + if (msr_index == MSR_IA32_ARCH_CAPABILITIES) + vmx_update_fb_clear_dis(vcpu, vmx); + return ret; } @@ -5544,6 +5607,8 @@ static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) update_exception_bitmap(vcpu); vpid_sync_context(vmx->vpid); + + vmx_update_fb_clear_dis(vcpu, vmx); } /* @@ -9177,6 +9242,11 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) vmx_l1d_flush(vcpu); else if (static_branch_unlikely(&mds_user_clear)) mds_clear_cpu_buffers(); + else if (static_branch_unlikely(&mmio_stale_data_clear) && + kvm_arch_has_assigned_device(vcpu->kvm)) + mds_clear_cpu_buffers(); + + vmx_disable_fb_clear(vmx); asm( /* Store host registers */ @@ -9295,6 +9365,8 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) #endif ); + vmx_enable_fb_clear(vmx); + /* * We do not use IBRS in the kernel. If this vCPU has used the * SPEC_CTRL MSR it may have left it on; save the value and @@ -11879,8 +11951,11 @@ static int __init vmx_init(void) } } + vmx_setup_fb_clear_ctrl(); + for_each_possible_cpu(cpu) { INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); + INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); } diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index c0f7e746722d..78c1838b9fff 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -1090,6 +1090,10 @@ u64 kvm_get_arch_capabilities(void) /* KVM does not emulate MSR_IA32_TSX_CTRL. */ data &= ~ARCH_CAP_TSX_CTRL_MSR; + + /* Guests don't need to know "Fill buffer clear control" exists */ + data &= ~ARCH_CAP_FB_CLEAR_CTRL; + return data; } diff --git a/drivers/base/cpu.c b/drivers/base/cpu.c index 100850398dd3..88f89a38588a 100644 --- a/drivers/base/cpu.c +++ b/drivers/base/cpu.c @@ -556,6 +556,12 @@ ssize_t __weak cpu_show_srbds(struct device *dev, return sprintf(buf, "Not affected\n"); } +ssize_t __weak cpu_show_mmio_stale_data(struct device *dev, + struct device_attribute *attr, char *buf) +{ + return sysfs_emit(buf, "Not affected\n"); +} + static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL); static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL); static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL); @@ -565,6 +571,7 @@ static DEVICE_ATTR(mds, 0444, cpu_show_mds, NULL); static DEVICE_ATTR(tsx_async_abort, 0444, cpu_show_tsx_async_abort, NULL); static DEVICE_ATTR(itlb_multihit, 0444, cpu_show_itlb_multihit, NULL); static DEVICE_ATTR(srbds, 0444, cpu_show_srbds, NULL); +static DEVICE_ATTR(mmio_stale_data, 0444, cpu_show_mmio_stale_data, NULL); static struct attribute *cpu_root_vulnerabilities_attrs[] = { &dev_attr_meltdown.attr, @@ -576,6 +583,7 @@ static struct attribute *cpu_root_vulnerabilities_attrs[] = { &dev_attr_tsx_async_abort.attr, &dev_attr_itlb_multihit.attr, &dev_attr_srbds.attr, + &dev_attr_mmio_stale_data.attr, NULL }; diff --git a/include/linux/cpu.h b/include/linux/cpu.h index e19bbc38a722..6c1cb1f1bd4b 100644 --- a/include/linux/cpu.h +++ b/include/linux/cpu.h @@ -61,6 +61,10 @@ extern ssize_t cpu_show_tsx_async_abort(struct device *dev, char *buf); extern ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf); +extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf); +extern ssize_t cpu_show_mmio_stale_data(struct device *dev, + struct device_attribute *attr, + char *buf); extern __printf(4, 5) struct device *cpu_device_create(struct device *parent, void *drvdata,