[PATCH 4.14 132/173] KVM: VMX: Add non-canonical check on writes to RTIT address MSRs

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



From: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>

[ Upstream commit fe6ed369fca98e99df55c932b85782a5687526b5 ]

Reject writes to RTIT address MSRs if the data being written is a
non-canonical address as the MSRs are subject to canonical checks, e.g.
KVM will trigger an unchecked #GP when loading the values to hardware
during pt_guest_enter().

Cc: stable@xxxxxxxxxxxxxxx
Signed-off-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>
Signed-off-by: Paolo Bonzini <pbonzini@xxxxxxxxxx>
Signed-off-by: Sasha Levin <sashal@xxxxxxxxxx>
---
 arch/x86/kvm/vmx/vmx.c | 8033 ++++++++++++++++++++++++++++++++++++++++
 1 file changed, 8033 insertions(+)
 create mode 100644 arch/x86/kvm/vmx/vmx.c

diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
new file mode 100644
index 0000000000000..3791ce8d269e0
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -0,0 +1,8033 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Avi Kivity   <avi@xxxxxxxxxxxx>
+ *   Yaniv Kamay  <yaniv@xxxxxxxxxxxx>
+ */
+
+#include <linux/frame.h>
+#include <linux/highmem.h>
+#include <linux/hrtimer.h>
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mod_devicetable.h>
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/sched/smt.h>
+#include <linux/slab.h>
+#include <linux/tboot.h>
+#include <linux/trace_events.h>
+
+#include <asm/apic.h>
+#include <asm/asm.h>
+#include <asm/cpu.h>
+#include <asm/debugreg.h>
+#include <asm/desc.h>
+#include <asm/fpu/internal.h>
+#include <asm/io.h>
+#include <asm/irq_remapping.h>
+#include <asm/kexec.h>
+#include <asm/perf_event.h>
+#include <asm/mce.h>
+#include <asm/mmu_context.h>
+#include <asm/mshyperv.h>
+#include <asm/spec-ctrl.h>
+#include <asm/virtext.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+#include "cpuid.h"
+#include "evmcs.h"
+#include "irq.h"
+#include "kvm_cache_regs.h"
+#include "lapic.h"
+#include "mmu.h"
+#include "nested.h"
+#include "ops.h"
+#include "pmu.h"
+#include "trace.h"
+#include "vmcs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+#include "x86.h"
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+static const struct x86_cpu_id vmx_cpu_id[] = {
+	X86_FEATURE_MATCH(X86_FEATURE_VMX),
+	{}
+};
+MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+
+bool __read_mostly enable_vpid = 1;
+module_param_named(vpid, enable_vpid, bool, 0444);
+
+static bool __read_mostly enable_vnmi = 1;
+module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
+
+bool __read_mostly flexpriority_enabled = 1;
+module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+
+bool __read_mostly enable_ept = 1;
+module_param_named(ept, enable_ept, bool, S_IRUGO);
+
+bool __read_mostly enable_unrestricted_guest = 1;
+module_param_named(unrestricted_guest,
+			enable_unrestricted_guest, bool, S_IRUGO);
+
+bool __read_mostly enable_ept_ad_bits = 1;
+module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+
+static bool __read_mostly emulate_invalid_guest_state = true;
+module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+
+static bool __read_mostly fasteoi = 1;
+module_param(fasteoi, bool, S_IRUGO);
+
+static bool __read_mostly enable_apicv = 1;
+module_param(enable_apicv, bool, S_IRUGO);
+
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static bool __read_mostly nested = 1;
+module_param(nested, bool, S_IRUGO);
+
+bool __read_mostly enable_pml = 1;
+module_param_named(pml, enable_pml, bool, S_IRUGO);
+
+static bool __read_mostly dump_invalid_vmcs = 0;
+module_param(dump_invalid_vmcs, bool, 0644);
+
+#define MSR_BITMAP_MODE_X2APIC		1
+#define MSR_BITMAP_MODE_X2APIC_APICV	2
+
+#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
+
+/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
+static int __read_mostly cpu_preemption_timer_multi;
+static bool __read_mostly enable_preemption_timer = 1;
+#ifdef CONFIG_X86_64
+module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
+#endif
+
+#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
+#define KVM_VM_CR0_ALWAYS_ON				\
+	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
+	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
+#define KVM_CR4_GUEST_OWNED_BITS				      \
+	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
+	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
+
+#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
+#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+
+#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+
+#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
+	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
+	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
+	RTIT_STATUS_BYTECNT))
+
+#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
+	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * ple_gap:    upper bound on the amount of time between two successive
+ *             executions of PAUSE in a loop. Also indicate if ple enabled.
+ *             According to test, this time is usually smaller than 128 cycles.
+ * ple_window: upper bound on the amount of time a guest is allowed to execute
+ *             in a PAUSE loop. Tests indicate that most spinlocks are held for
+ *             less than 2^12 cycles
+ * Time is measured based on a counter that runs at the same rate as the TSC,
+ * refer SDM volume 3b section 21.6.13 & 22.1.3.
+ */
+static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
+module_param(ple_gap, uint, 0444);
+
+static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+module_param(ple_window, uint, 0444);
+
+/* Default doubles per-vcpu window every exit. */
+static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
+module_param(ple_window_grow, uint, 0444);
+
+/* Default resets per-vcpu window every exit to ple_window. */
+static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(ple_window_shrink, uint, 0444);
+
+/* Default is to compute the maximum so we can never overflow. */
+static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+module_param(ple_window_max, uint, 0444);
+
+/* Default is SYSTEM mode, 1 for host-guest mode */
+int __read_mostly pt_mode = PT_MODE_SYSTEM;
+module_param(pt_mode, int, S_IRUGO);
+
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
+static DEFINE_MUTEX(vmx_l1d_flush_mutex);
+
+/* Storage for pre module init parameter parsing */
+static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
+
+static const struct {
+	const char *option;
+	bool for_parse;
+} vmentry_l1d_param[] = {
+	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
+	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
+	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
+	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
+	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
+	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
+};
+
+#define L1D_CACHE_ORDER 4
+static void *vmx_l1d_flush_pages;
+
+static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
+{
+	struct page *page;
+	unsigned int i;
+
+	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
+		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+		return 0;
+	}
+
+	if (!enable_ept) {
+		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
+		return 0;
+	}
+
+	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
+		u64 msr;
+
+		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
+			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+			return 0;
+		}
+	}
+
+	/* If set to auto use the default l1tf mitigation method */
+	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
+		switch (l1tf_mitigation) {
+		case L1TF_MITIGATION_OFF:
+			l1tf = VMENTER_L1D_FLUSH_NEVER;
+			break;
+		case L1TF_MITIGATION_FLUSH_NOWARN:
+		case L1TF_MITIGATION_FLUSH:
+		case L1TF_MITIGATION_FLUSH_NOSMT:
+			l1tf = VMENTER_L1D_FLUSH_COND;
+			break;
+		case L1TF_MITIGATION_FULL:
+		case L1TF_MITIGATION_FULL_FORCE:
+			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+			break;
+		}
+	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
+		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+	}
+
+	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
+	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+		/*
+		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
+		 * lifetime and so should not be charged to a memcg.
+		 */
+		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
+		if (!page)
+			return -ENOMEM;
+		vmx_l1d_flush_pages = page_address(page);
+
+		/*
+		 * Initialize each page with a different pattern in
+		 * order to protect against KSM in the nested
+		 * virtualization case.
+		 */
+		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
+			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
+			       PAGE_SIZE);
+		}
+	}
+
+	l1tf_vmx_mitigation = l1tf;
+
+	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
+		static_branch_enable(&vmx_l1d_should_flush);
+	else
+		static_branch_disable(&vmx_l1d_should_flush);
+
+	if (l1tf == VMENTER_L1D_FLUSH_COND)
+		static_branch_enable(&vmx_l1d_flush_cond);
+	else
+		static_branch_disable(&vmx_l1d_flush_cond);
+	return 0;
+}
+
+static int vmentry_l1d_flush_parse(const char *s)
+{
+	unsigned int i;
+
+	if (s) {
+		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
+			if (vmentry_l1d_param[i].for_parse &&
+			    sysfs_streq(s, vmentry_l1d_param[i].option))
+				return i;
+		}
+	}
+	return -EINVAL;
+}
+
+static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
+{
+	int l1tf, ret;
+
+	l1tf = vmentry_l1d_flush_parse(s);
+	if (l1tf < 0)
+		return l1tf;
+
+	if (!boot_cpu_has(X86_BUG_L1TF))
+		return 0;
+
+	/*
+	 * Has vmx_init() run already? If not then this is the pre init
+	 * parameter parsing. In that case just store the value and let
+	 * vmx_init() do the proper setup after enable_ept has been
+	 * established.
+	 */
+	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
+		vmentry_l1d_flush_param = l1tf;
+		return 0;
+	}
+
+	mutex_lock(&vmx_l1d_flush_mutex);
+	ret = vmx_setup_l1d_flush(l1tf);
+	mutex_unlock(&vmx_l1d_flush_mutex);
+	return ret;
+}
+
+static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
+{
+	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
+		return sprintf(s, "???\n");
+
+	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
+}
+
+static const struct kernel_param_ops vmentry_l1d_flush_ops = {
+	.set = vmentry_l1d_flush_set,
+	.get = vmentry_l1d_flush_get,
+};
+module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
+
+static bool guest_state_valid(struct kvm_vcpu *vcpu);
+static u32 vmx_segment_access_rights(struct kvm_segment *var);
+static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+							  u32 msr, int type);
+
+void vmx_vmexit(void);
+
+#define vmx_insn_failed(fmt...)		\
+do {					\
+	WARN_ONCE(1, fmt);		\
+	pr_warn_ratelimited(fmt);	\
+} while (0)
+
+asmlinkage void vmread_error(unsigned long field, bool fault)
+{
+	if (fault)
+		kvm_spurious_fault();
+	else
+		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
+}
+
+noinline void vmwrite_error(unsigned long field, unsigned long value)
+{
+	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
+			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+}
+
+noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
+{
+	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
+}
+
+noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
+{
+	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
+}
+
+noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
+{
+	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
+			ext, vpid, gva);
+}
+
+noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
+{
+	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
+			ext, eptp, gpa);
+}
+
+static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+
+/*
+ * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
+ * can find which vCPU should be waken up.
+ */
+static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
+static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
+
+static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+static DEFINE_SPINLOCK(vmx_vpid_lock);
+
+struct vmcs_config vmcs_config;
+struct vmx_capability vmx_capability;
+
+#define VMX_SEGMENT_FIELD(seg)					\
+	[VCPU_SREG_##seg] = {                                   \
+		.selector = GUEST_##seg##_SELECTOR,		\
+		.base = GUEST_##seg##_BASE,		   	\
+		.limit = GUEST_##seg##_LIMIT,		   	\
+		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
+	}
+
+static const struct kvm_vmx_segment_field {
+	unsigned selector;
+	unsigned base;
+	unsigned limit;
+	unsigned ar_bytes;
+} kvm_vmx_segment_fields[] = {
+	VMX_SEGMENT_FIELD(CS),
+	VMX_SEGMENT_FIELD(DS),
+	VMX_SEGMENT_FIELD(ES),
+	VMX_SEGMENT_FIELD(FS),
+	VMX_SEGMENT_FIELD(GS),
+	VMX_SEGMENT_FIELD(SS),
+	VMX_SEGMENT_FIELD(TR),
+	VMX_SEGMENT_FIELD(LDTR),
+};
+
+u64 host_efer;
+static unsigned long host_idt_base;
+
+/*
+ * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
+ * will emulate SYSCALL in legacy mode if the vendor string in guest
+ * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
+ * support this emulation, IA32_STAR must always be included in
+ * vmx_msr_index[], even in i386 builds.
+ */
+const u32 vmx_msr_index[] = {
+#ifdef CONFIG_X86_64
+	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+#endif
+	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+	MSR_IA32_TSX_CTRL,
+};
+
+#if IS_ENABLED(CONFIG_HYPERV)
+static bool __read_mostly enlightened_vmcs = true;
+module_param(enlightened_vmcs, bool, 0444);
+
+/* check_ept_pointer() should be under protection of ept_pointer_lock. */
+static void check_ept_pointer_match(struct kvm *kvm)
+{
+	struct kvm_vcpu *vcpu;
+	u64 tmp_eptp = INVALID_PAGE;
+	int i;
+
+	kvm_for_each_vcpu(i, vcpu, kvm) {
+		if (!VALID_PAGE(tmp_eptp)) {
+			tmp_eptp = to_vmx(vcpu)->ept_pointer;
+		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
+			to_kvm_vmx(kvm)->ept_pointers_match
+				= EPT_POINTERS_MISMATCH;
+			return;
+		}
+	}
+
+	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
+}
+
+static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
+		void *data)
+{
+	struct kvm_tlb_range *range = data;
+
+	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
+			range->pages);
+}
+
+static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
+		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
+{
+	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
+
+	/*
+	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
+	 * of the base of EPT PML4 table, strip off EPT configuration
+	 * information.
+	 */
+	if (range)
+		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
+				kvm_fill_hv_flush_list_func, (void *)range);
+	else
+		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
+}
+
+static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
+		struct kvm_tlb_range *range)
+{
+	struct kvm_vcpu *vcpu;
+	int ret = 0, i;
+
+	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
+		check_ept_pointer_match(kvm);
+
+	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
+		kvm_for_each_vcpu(i, vcpu, kvm) {
+			/* If ept_pointer is invalid pointer, bypass flush request. */
+			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
+				ret |= __hv_remote_flush_tlb_with_range(
+					kvm, vcpu, range);
+		}
+	} else {
+		ret = __hv_remote_flush_tlb_with_range(kvm,
+				kvm_get_vcpu(kvm, 0), range);
+	}
+
+	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+	return ret;
+}
+static int hv_remote_flush_tlb(struct kvm *kvm)
+{
+	return hv_remote_flush_tlb_with_range(kvm, NULL);
+}
+
+static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
+{
+	struct hv_enlightened_vmcs *evmcs;
+	struct hv_partition_assist_pg **p_hv_pa_pg =
+			&vcpu->kvm->arch.hyperv.hv_pa_pg;
+	/*
+	 * Synthetic VM-Exit is not enabled in current code and so All
+	 * evmcs in singe VM shares same assist page.
+	 */
+	if (!*p_hv_pa_pg)
+		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
+
+	if (!*p_hv_pa_pg)
+		return -ENOMEM;
+
+	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
+
+	evmcs->partition_assist_page =
+		__pa(*p_hv_pa_pg);
+	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
+	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
+
+	return 0;
+}
+
+#endif /* IS_ENABLED(CONFIG_HYPERV) */
+
+/*
+ * Comment's format: document - errata name - stepping - processor name.
+ * Refer from
+ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
+ */
+static u32 vmx_preemption_cpu_tfms[] = {
+/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
+0x000206E6,
+/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
+/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
+/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020652,
+/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020655,
+/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
+/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
+/*
+ * 320767.pdf - AAP86  - B1 -
+ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
+ */
+0x000106E5,
+/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
+0x000106A0,
+/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
+0x000106A1,
+/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
+0x000106A4,
+ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
+ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
+ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
+0x000106A5,
+ /* Xeon E3-1220 V2 */
+0x000306A8,
+};
+
+static inline bool cpu_has_broken_vmx_preemption_timer(void)
+{
+	u32 eax = cpuid_eax(0x00000001), i;
+
+	/* Clear the reserved bits */
+	eax &= ~(0x3U << 14 | 0xfU << 28);
+	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
+		if (eax == vmx_preemption_cpu_tfms[i])
+			return true;
+
+	return false;
+}
+
+static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
+{
+	return flexpriority_enabled && lapic_in_kernel(vcpu);
+}
+
+static inline bool report_flexpriority(void)
+{
+	return flexpriority_enabled;
+}
+
+static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
+{
+	int i;
+
+	for (i = 0; i < vmx->nmsrs; ++i)
+		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
+			return i;
+	return -1;
+}
+
+struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
+{
+	int i;
+
+	i = __find_msr_index(vmx, msr);
+	if (i >= 0)
+		return &vmx->guest_msrs[i];
+	return NULL;
+}
+
+static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
+{
+	int ret = 0;
+
+	u64 old_msr_data = msr->data;
+	msr->data = data;
+	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
+		preempt_disable();
+		ret = kvm_set_shared_msr(msr->index, msr->data,
+					 msr->mask);
+		preempt_enable();
+		if (ret)
+			msr->data = old_msr_data;
+	}
+	return ret;
+}
+
+void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+{
+	vmcs_clear(loaded_vmcs->vmcs);
+	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
+		vmcs_clear(loaded_vmcs->shadow_vmcs);
+	loaded_vmcs->cpu = -1;
+	loaded_vmcs->launched = 0;
+}
+
+#ifdef CONFIG_KEXEC_CORE
+/*
+ * This bitmap is used to indicate whether the vmclear
+ * operation is enabled on all cpus. All disabled by
+ * default.
+ */
+static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
+
+static inline void crash_enable_local_vmclear(int cpu)
+{
+	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline void crash_disable_local_vmclear(int cpu)
+{
+	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline int crash_local_vmclear_enabled(int cpu)
+{
+	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static void crash_vmclear_local_loaded_vmcss(void)
+{
+	int cpu = raw_smp_processor_id();
+	struct loaded_vmcs *v;
+
+	if (!crash_local_vmclear_enabled(cpu))
+		return;
+
+	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+			    loaded_vmcss_on_cpu_link)
+		vmcs_clear(v->vmcs);
+}
+#else
+static inline void crash_enable_local_vmclear(int cpu) { }
+static inline void crash_disable_local_vmclear(int cpu) { }
+#endif /* CONFIG_KEXEC_CORE */
+
+static void __loaded_vmcs_clear(void *arg)
+{
+	struct loaded_vmcs *loaded_vmcs = arg;
+	int cpu = raw_smp_processor_id();
+
+	if (loaded_vmcs->cpu != cpu)
+		return; /* vcpu migration can race with cpu offline */
+	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+		per_cpu(current_vmcs, cpu) = NULL;
+	crash_disable_local_vmclear(cpu);
+	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+
+	/*
+	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
+	 * is before setting loaded_vmcs->vcpu to -1 which is done in
+	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
+	 * then adds the vmcs into percpu list before it is deleted.
+	 */
+	smp_wmb();
+
+	loaded_vmcs_init(loaded_vmcs);
+	crash_enable_local_vmclear(cpu);
+}
+
+void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+{
+	int cpu = loaded_vmcs->cpu;
+
+	if (cpu != -1)
+		smp_call_function_single(cpu,
+			 __loaded_vmcs_clear, loaded_vmcs, 1);
+}
+
+static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+				       unsigned field)
+{
+	bool ret;
+	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+
+	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
+		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
+		vmx->segment_cache.bitmask = 0;
+	}
+	ret = vmx->segment_cache.bitmask & mask;
+	vmx->segment_cache.bitmask |= mask;
+	return ret;
+}
+
+static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+{
+	u16 *p = &vmx->segment_cache.seg[seg].selector;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+	return *p;
+}
+
+static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+{
+	ulong *p = &vmx->segment_cache.seg[seg].base;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+	return *p;
+}
+
+static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+{
+	u32 *p = &vmx->segment_cache.seg[seg].limit;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+	return *p;
+}
+
+static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+{
+	u32 *p = &vmx->segment_cache.seg[seg].ar;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+	return *p;
+}
+
+void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+	u32 eb;
+
+	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
+	/*
+	 * Guest access to VMware backdoor ports could legitimately
+	 * trigger #GP because of TSS I/O permission bitmap.
+	 * We intercept those #GP and allow access to them anyway
+	 * as VMware does.
+	 */
+	if (enable_vmware_backdoor)
+		eb |= (1u << GP_VECTOR);
+	if ((vcpu->guest_debug &
+	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+		eb |= 1u << BP_VECTOR;
+	if (to_vmx(vcpu)->rmode.vm86_active)
+		eb = ~0;
+	if (enable_ept)
+		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
+
+	/* When we are running a nested L2 guest and L1 specified for it a
+	 * certain exception bitmap, we must trap the same exceptions and pass
+	 * them to L1. When running L2, we will only handle the exceptions
+	 * specified above if L1 did not want them.
+	 */
+	if (is_guest_mode(vcpu))
+		eb |= get_vmcs12(vcpu)->exception_bitmap;
+
+	vmcs_write32(EXCEPTION_BITMAP, eb);
+}
+
+/*
+ * Check if MSR is intercepted for currently loaded MSR bitmap.
+ */
+static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
+{
+	unsigned long *msr_bitmap;
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return true;
+
+	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
+
+	if (msr <= 0x1fff) {
+		return !!test_bit(msr, msr_bitmap + 0x800 / f);
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+	}
+
+	return true;
+}
+
+static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+		unsigned long entry, unsigned long exit)
+{
+	vm_entry_controls_clearbit(vmx, entry);
+	vm_exit_controls_clearbit(vmx, exit);
+}
+
+int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
+{
+	unsigned int i;
+
+	for (i = 0; i < m->nr; ++i) {
+		if (m->val[i].index == msr)
+			return i;
+	}
+	return -ENOENT;
+}
+
+static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+{
+	int i;
+	struct msr_autoload *m = &vmx->msr_autoload;
+
+	switch (msr) {
+	case MSR_EFER:
+		if (cpu_has_load_ia32_efer()) {
+			clear_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_EFER,
+					VM_EXIT_LOAD_IA32_EFER);
+			return;
+		}
+		break;
+	case MSR_CORE_PERF_GLOBAL_CTRL:
+		if (cpu_has_load_perf_global_ctrl()) {
+			clear_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+			return;
+		}
+		break;
+	}
+	i = vmx_find_msr_index(&m->guest, msr);
+	if (i < 0)
+		goto skip_guest;
+	--m->guest.nr;
+	m->guest.val[i] = m->guest.val[m->guest.nr];
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+
+skip_guest:
+	i = vmx_find_msr_index(&m->host, msr);
+	if (i < 0)
+		return;
+
+	--m->host.nr;
+	m->host.val[i] = m->host.val[m->host.nr];
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+}
+
+static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+		unsigned long entry, unsigned long exit,
+		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+		u64 guest_val, u64 host_val)
+{
+	vmcs_write64(guest_val_vmcs, guest_val);
+	if (host_val_vmcs != HOST_IA32_EFER)
+		vmcs_write64(host_val_vmcs, host_val);
+	vm_entry_controls_setbit(vmx, entry);
+	vm_exit_controls_setbit(vmx, exit);
+}
+
+static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+				  u64 guest_val, u64 host_val, bool entry_only)
+{
+	int i, j = 0;
+	struct msr_autoload *m = &vmx->msr_autoload;
+
+	switch (msr) {
+	case MSR_EFER:
+		if (cpu_has_load_ia32_efer()) {
+			add_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_EFER,
+					VM_EXIT_LOAD_IA32_EFER,
+					GUEST_IA32_EFER,
+					HOST_IA32_EFER,
+					guest_val, host_val);
+			return;
+		}
+		break;
+	case MSR_CORE_PERF_GLOBAL_CTRL:
+		if (cpu_has_load_perf_global_ctrl()) {
+			add_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+					GUEST_IA32_PERF_GLOBAL_CTRL,
+					HOST_IA32_PERF_GLOBAL_CTRL,
+					guest_val, host_val);
+			return;
+		}
+		break;
+	case MSR_IA32_PEBS_ENABLE:
+		/* PEBS needs a quiescent period after being disabled (to write
+		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
+		 * provide that period, so a CPU could write host's record into
+		 * guest's memory.
+		 */
+		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
+	}
+
+	i = vmx_find_msr_index(&m->guest, msr);
+	if (!entry_only)
+		j = vmx_find_msr_index(&m->host, msr);
+
+	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
+		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
+		printk_once(KERN_WARNING "Not enough msr switch entries. "
+				"Can't add msr %x\n", msr);
+		return;
+	}
+	if (i < 0) {
+		i = m->guest.nr++;
+		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+	}
+	m->guest.val[i].index = msr;
+	m->guest.val[i].value = guest_val;
+
+	if (entry_only)
+		return;
+
+	if (j < 0) {
+		j = m->host.nr++;
+		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+	}
+	m->host.val[j].index = msr;
+	m->host.val[j].value = host_val;
+}
+
+static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
+{
+	u64 guest_efer = vmx->vcpu.arch.efer;
+	u64 ignore_bits = 0;
+
+	/* Shadow paging assumes NX to be available.  */
+	if (!enable_ept)
+		guest_efer |= EFER_NX;
+
+	/*
+	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
+	 */
+	ignore_bits |= EFER_SCE;
+#ifdef CONFIG_X86_64
+	ignore_bits |= EFER_LMA | EFER_LME;
+	/* SCE is meaningful only in long mode on Intel */
+	if (guest_efer & EFER_LMA)
+		ignore_bits &= ~(u64)EFER_SCE;
+#endif
+
+	/*
+	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
+	 * On CPUs that support "load IA32_EFER", always switch EFER
+	 * atomically, since it's faster than switching it manually.
+	 */
+	if (cpu_has_load_ia32_efer() ||
+	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+		if (!(guest_efer & EFER_LMA))
+			guest_efer &= ~EFER_LME;
+		if (guest_efer != host_efer)
+			add_atomic_switch_msr(vmx, MSR_EFER,
+					      guest_efer, host_efer, false);
+		else
+			clear_atomic_switch_msr(vmx, MSR_EFER);
+		return false;
+	} else {
+		clear_atomic_switch_msr(vmx, MSR_EFER);
+
+		guest_efer &= ~ignore_bits;
+		guest_efer |= host_efer & ignore_bits;
+
+		vmx->guest_msrs[efer_offset].data = guest_efer;
+		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
+
+		return true;
+	}
+}
+
+#ifdef CONFIG_X86_32
+/*
+ * On 32-bit kernels, VM exits still load the FS and GS bases from the
+ * VMCS rather than the segment table.  KVM uses this helper to figure
+ * out the current bases to poke them into the VMCS before entry.
+ */
+static unsigned long segment_base(u16 selector)
+{
+	struct desc_struct *table;
+	unsigned long v;
+
+	if (!(selector & ~SEGMENT_RPL_MASK))
+		return 0;
+
+	table = get_current_gdt_ro();
+
+	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
+		u16 ldt_selector = kvm_read_ldt();
+
+		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
+			return 0;
+
+		table = (struct desc_struct *)segment_base(ldt_selector);
+	}
+	v = get_desc_base(&table[selector >> 3]);
+	return v;
+}
+#endif
+
+static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+	u32 i;
+
+	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+	for (i = 0; i < addr_range; i++) {
+		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+	}
+}
+
+static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+	u32 i;
+
+	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+	for (i = 0; i < addr_range; i++) {
+		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+	}
+}
+
+static void pt_guest_enter(struct vcpu_vmx *vmx)
+{
+	if (pt_mode == PT_MODE_SYSTEM)
+		return;
+
+	/*
+	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
+	 * Save host state before VM entry.
+	 */
+	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+		wrmsrl(MSR_IA32_RTIT_CTL, 0);
+		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+	}
+}
+
+static void pt_guest_exit(struct vcpu_vmx *vmx)
+{
+	if (pt_mode == PT_MODE_SYSTEM)
+		return;
+
+	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+	}
+
+	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
+	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+}
+
+void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
+			unsigned long fs_base, unsigned long gs_base)
+{
+	if (unlikely(fs_sel != host->fs_sel)) {
+		if (!(fs_sel & 7))
+			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
+		else
+			vmcs_write16(HOST_FS_SELECTOR, 0);
+		host->fs_sel = fs_sel;
+	}
+	if (unlikely(gs_sel != host->gs_sel)) {
+		if (!(gs_sel & 7))
+			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
+		else
+			vmcs_write16(HOST_GS_SELECTOR, 0);
+		host->gs_sel = gs_sel;
+	}
+	if (unlikely(fs_base != host->fs_base)) {
+		vmcs_writel(HOST_FS_BASE, fs_base);
+		host->fs_base = fs_base;
+	}
+	if (unlikely(gs_base != host->gs_base)) {
+		vmcs_writel(HOST_GS_BASE, gs_base);
+		host->gs_base = gs_base;
+	}
+}
+
+void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs_host_state *host_state;
+#ifdef CONFIG_X86_64
+	int cpu = raw_smp_processor_id();
+#endif
+	unsigned long fs_base, gs_base;
+	u16 fs_sel, gs_sel;
+	int i;
+
+	vmx->req_immediate_exit = false;
+
+	/*
+	 * Note that guest MSRs to be saved/restored can also be changed
+	 * when guest state is loaded. This happens when guest transitions
+	 * to/from long-mode by setting MSR_EFER.LMA.
+	 */
+	if (!vmx->guest_msrs_ready) {
+		vmx->guest_msrs_ready = true;
+		for (i = 0; i < vmx->save_nmsrs; ++i)
+			kvm_set_shared_msr(vmx->guest_msrs[i].index,
+					   vmx->guest_msrs[i].data,
+					   vmx->guest_msrs[i].mask);
+
+	}
+	if (vmx->guest_state_loaded)
+		return;
+
+	host_state = &vmx->loaded_vmcs->host_state;
+
+	/*
+	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
+	 * allow segment selectors with cpl > 0 or ti == 1.
+	 */
+	host_state->ldt_sel = kvm_read_ldt();
+
+#ifdef CONFIG_X86_64
+	savesegment(ds, host_state->ds_sel);
+	savesegment(es, host_state->es_sel);
+
+	gs_base = cpu_kernelmode_gs_base(cpu);
+	if (likely(is_64bit_mm(current->mm))) {
+		save_fsgs_for_kvm();
+		fs_sel = current->thread.fsindex;
+		gs_sel = current->thread.gsindex;
+		fs_base = current->thread.fsbase;
+		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
+	} else {
+		savesegment(fs, fs_sel);
+		savesegment(gs, gs_sel);
+		fs_base = read_msr(MSR_FS_BASE);
+		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
+	}
+
+	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#else
+	savesegment(fs, fs_sel);
+	savesegment(gs, gs_sel);
+	fs_base = segment_base(fs_sel);
+	gs_base = segment_base(gs_sel);
+#endif
+
+	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
+	vmx->guest_state_loaded = true;
+}
+
+static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
+{
+	struct vmcs_host_state *host_state;
+
+	if (!vmx->guest_state_loaded)
+		return;
+
+	host_state = &vmx->loaded_vmcs->host_state;
+
+	++vmx->vcpu.stat.host_state_reload;
+
+#ifdef CONFIG_X86_64
+	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
+		kvm_load_ldt(host_state->ldt_sel);
+#ifdef CONFIG_X86_64
+		load_gs_index(host_state->gs_sel);
+#else
+		loadsegment(gs, host_state->gs_sel);
+#endif
+	}
+	if (host_state->fs_sel & 7)
+		loadsegment(fs, host_state->fs_sel);
+#ifdef CONFIG_X86_64
+	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
+		loadsegment(ds, host_state->ds_sel);
+		loadsegment(es, host_state->es_sel);
+	}
+#endif
+	invalidate_tss_limit();
+#ifdef CONFIG_X86_64
+	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+#endif
+	load_fixmap_gdt(raw_smp_processor_id());
+	vmx->guest_state_loaded = false;
+	vmx->guest_msrs_ready = false;
+}
+
+#ifdef CONFIG_X86_64
+static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
+{
+	preempt_disable();
+	if (vmx->guest_state_loaded)
+		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+	preempt_enable();
+	return vmx->msr_guest_kernel_gs_base;
+}
+
+static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
+{
+	preempt_disable();
+	if (vmx->guest_state_loaded)
+		wrmsrl(MSR_KERNEL_GS_BASE, data);
+	preempt_enable();
+	vmx->msr_guest_kernel_gs_base = data;
+}
+#endif
+
+static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+	struct pi_desc old, new;
+	unsigned int dest;
+
+	/*
+	 * In case of hot-plug or hot-unplug, we may have to undo
+	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
+	 * always keep PI.NDST up to date for simplicity: it makes the
+	 * code easier, and CPU migration is not a fast path.
+	 */
+	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
+		return;
+
+	/*
+	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
+	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
+	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
+	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
+	 * correctly.
+	 */
+	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
+		pi_clear_sn(pi_desc);
+		goto after_clear_sn;
+	}
+
+	/* The full case.  */
+	do {
+		old.control = new.control = pi_desc->control;
+
+		dest = cpu_physical_id(cpu);
+
+		if (x2apic_enabled())
+			new.ndst = dest;
+		else
+			new.ndst = (dest << 8) & 0xFF00;
+
+		new.sn = 0;
+	} while (cmpxchg64(&pi_desc->control, old.control,
+			   new.control) != old.control);
+
+after_clear_sn:
+
+	/*
+	 * Clear SN before reading the bitmap.  The VT-d firmware
+	 * writes the bitmap and reads SN atomically (5.2.3 in the
+	 * spec), so it doesn't really have a memory barrier that
+	 * pairs with this, but we cannot do that and we need one.
+	 */
+	smp_mb__after_atomic();
+
+	if (!pi_is_pir_empty(pi_desc))
+		pi_set_on(pi_desc);
+}
+
+void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
+
+	if (!already_loaded) {
+		loaded_vmcs_clear(vmx->loaded_vmcs);
+		local_irq_disable();
+		crash_disable_local_vmclear(cpu);
+
+		/*
+		 * Read loaded_vmcs->cpu should be before fetching
+		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
+		 * See the comments in __loaded_vmcs_clear().
+		 */
+		smp_rmb();
+
+		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+			 &per_cpu(loaded_vmcss_on_cpu, cpu));
+		crash_enable_local_vmclear(cpu);
+		local_irq_enable();
+	}
+
+	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+		vmcs_load(vmx->loaded_vmcs->vmcs);
+		indirect_branch_prediction_barrier();
+	}
+
+	if (!already_loaded) {
+		void *gdt = get_current_gdt_ro();
+		unsigned long sysenter_esp;
+
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+
+		/*
+		 * Linux uses per-cpu TSS and GDT, so set these when switching
+		 * processors.  See 22.2.4.
+		 */
+		vmcs_writel(HOST_TR_BASE,
+			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
+		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
+
+		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+
+		vmx->loaded_vmcs->cpu = cpu;
+	}
+
+	/* Setup TSC multiplier */
+	if (kvm_has_tsc_control &&
+	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
+		decache_tsc_multiplier(vmx);
+}
+
+/*
+ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+ * vcpu mutex is already taken.
+ */
+void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	vmx_vcpu_load_vmcs(vcpu, cpu);
+
+	vmx_vcpu_pi_load(vcpu, cpu);
+
+	vmx->host_pkru = read_pkru();
+	vmx->host_debugctlmsr = get_debugctlmsr();
+}
+
+static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
+		!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	/* Set SN when the vCPU is preempted */
+	if (vcpu->preempted)
+		pi_set_sn(pi_desc);
+}
+
+static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+{
+	vmx_vcpu_pi_put(vcpu);
+
+	vmx_prepare_switch_to_host(to_vmx(vcpu));
+}
+
+static bool emulation_required(struct kvm_vcpu *vcpu)
+{
+	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+
+unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long rflags, save_rflags;
+
+	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
+		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
+		rflags = vmcs_readl(GUEST_RFLAGS);
+		if (vmx->rmode.vm86_active) {
+			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+			save_rflags = vmx->rmode.save_rflags;
+			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+		}
+		vmx->rflags = rflags;
+	}
+	return vmx->rflags;
+}
+
+void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long old_rflags;
+
+	if (enable_unrestricted_guest) {
+		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
+		vmx->rflags = rflags;
+		vmcs_writel(GUEST_RFLAGS, rflags);
+		return;
+	}
+
+	old_rflags = vmx_get_rflags(vcpu);
+	vmx->rflags = rflags;
+	if (vmx->rmode.vm86_active) {
+		vmx->rmode.save_rflags = rflags;
+		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+	}
+	vmcs_writel(GUEST_RFLAGS, rflags);
+
+	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
+		vmx->emulation_required = emulation_required(vcpu);
+}
+
+u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+	int ret = 0;
+
+	if (interruptibility & GUEST_INTR_STATE_STI)
+		ret |= KVM_X86_SHADOW_INT_STI;
+	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+		ret |= KVM_X86_SHADOW_INT_MOV_SS;
+
+	return ret;
+}
+
+void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+	u32 interruptibility = interruptibility_old;
+
+	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+
+	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+		interruptibility |= GUEST_INTR_STATE_MOV_SS;
+	else if (mask & KVM_X86_SHADOW_INT_STI)
+		interruptibility |= GUEST_INTR_STATE_STI;
+
+	if ((interruptibility != interruptibility_old))
+		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+}
+
+static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long value;
+
+	/*
+	 * Any MSR write that attempts to change bits marked reserved will
+	 * case a #GP fault.
+	 */
+	if (data & vmx->pt_desc.ctl_bitmask)
+		return 1;
+
+	/*
+	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
+	 * result in a #GP unless the same write also clears TraceEn.
+	 */
+	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
+		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
+		return 1;
+
+	/*
+	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
+	 * and FabricEn would cause #GP, if
+	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
+	 */
+	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
+		!(data & RTIT_CTL_FABRIC_EN) &&
+		!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output))
+		return 1;
+
+	/*
+	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
+	 * utilize encodings marked reserved will casue a #GP fault.
+	 */
+	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
+			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
+			RTIT_CTL_MTC_RANGE_OFFSET, &value))
+		return 1;
+	value = intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_cycle_thresholds);
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
+			RTIT_CTL_CYC_THRESH_OFFSET, &value))
+		return 1;
+	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
+			RTIT_CTL_PSB_FREQ_OFFSET, &value))
+		return 1;
+
+	/*
+	 * If ADDRx_CFG is reserved or the encodings is >2 will
+	 * cause a #GP fault.
+	 */
+	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
+		return 1;
+	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
+		return 1;
+	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
+		return 1;
+	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
+		return 1;
+
+	return 0;
+}
+
+static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+	unsigned long rip;
+
+	/*
+	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
+	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
+	 * set when EPT misconfig occurs.  In practice, real hardware updates
+	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
+	 * (namely Hyper-V) don't set it due to it being undefined behavior,
+	 * i.e. we end up advancing IP with some random value.
+	 */
+	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
+	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
+		rip = kvm_rip_read(vcpu);
+		rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+		kvm_rip_write(vcpu, rip);
+	} else {
+		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
+			return 0;
+	}
+
+	/* skipping an emulated instruction also counts */
+	vmx_set_interrupt_shadow(vcpu, 0);
+
+	return 1;
+}
+
+static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
+	 * explicitly skip the instruction because if the HLT state is set,
+	 * then the instruction is already executing and RIP has already been
+	 * advanced.
+	 */
+	if (kvm_hlt_in_guest(vcpu->kvm) &&
+			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
+		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+}
+
+static void vmx_queue_exception(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned nr = vcpu->arch.exception.nr;
+	bool has_error_code = vcpu->arch.exception.has_error_code;
+	u32 error_code = vcpu->arch.exception.error_code;
+	u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+	kvm_deliver_exception_payload(vcpu);
+
+	if (has_error_code) {
+		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
+		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+	}
+
+	if (vmx->rmode.vm86_active) {
+		int inc_eip = 0;
+		if (kvm_exception_is_soft(nr))
+			inc_eip = vcpu->arch.event_exit_inst_len;
+		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
+		return;
+	}
+
+	WARN_ON_ONCE(vmx->emulation_required);
+
+	if (kvm_exception_is_soft(nr)) {
+		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+			     vmx->vcpu.arch.event_exit_inst_len);
+		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+	} else
+		intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+
+	vmx_clear_hlt(vcpu);
+}
+
+static bool vmx_rdtscp_supported(void)
+{
+	return cpu_has_vmx_rdtscp();
+}
+
+static bool vmx_invpcid_supported(void)
+{
+	return cpu_has_vmx_invpcid();
+}
+
+/*
+ * Swap MSR entry in host/guest MSR entry array.
+ */
+static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
+{
+	struct shared_msr_entry tmp;
+
+	tmp = vmx->guest_msrs[to];
+	vmx->guest_msrs[to] = vmx->guest_msrs[from];
+	vmx->guest_msrs[from] = tmp;
+}
+
+/*
+ * Set up the vmcs to automatically save and restore system
+ * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
+ * mode, as fiddling with msrs is very expensive.
+ */
+static void setup_msrs(struct vcpu_vmx *vmx)
+{
+	int save_nmsrs, index;
+
+	save_nmsrs = 0;
+#ifdef CONFIG_X86_64
+	/*
+	 * The SYSCALL MSRs are only needed on long mode guests, and only
+	 * when EFER.SCE is set.
+	 */
+	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
+		index = __find_msr_index(vmx, MSR_STAR);
+		if (index >= 0)
+			move_msr_up(vmx, index, save_nmsrs++);
+		index = __find_msr_index(vmx, MSR_LSTAR);
+		if (index >= 0)
+			move_msr_up(vmx, index, save_nmsrs++);
+		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
+		if (index >= 0)
+			move_msr_up(vmx, index, save_nmsrs++);
+	}
+#endif
+	index = __find_msr_index(vmx, MSR_EFER);
+	if (index >= 0 && update_transition_efer(vmx, index))
+		move_msr_up(vmx, index, save_nmsrs++);
+	index = __find_msr_index(vmx, MSR_TSC_AUX);
+	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
+		move_msr_up(vmx, index, save_nmsrs++);
+	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
+	if (index >= 0)
+		move_msr_up(vmx, index, save_nmsrs++);
+
+	vmx->save_nmsrs = save_nmsrs;
+	vmx->guest_msrs_ready = false;
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(&vmx->vcpu);
+}
+
+static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	if (is_guest_mode(vcpu) &&
+	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
+		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
+
+	return vcpu->arch.tsc_offset;
+}
+
+static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	u64 g_tsc_offset = 0;
+
+	/*
+	 * We're here if L1 chose not to trap WRMSR to TSC. According
+	 * to the spec, this should set L1's TSC; The offset that L1
+	 * set for L2 remains unchanged, and still needs to be added
+	 * to the newly set TSC to get L2's TSC.
+	 */
+	if (is_guest_mode(vcpu) &&
+	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
+		g_tsc_offset = vmcs12->tsc_offset;
+
+	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+				   vcpu->arch.tsc_offset - g_tsc_offset,
+				   offset);
+	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
+	return offset + g_tsc_offset;
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
+}
+
+static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
+						 uint64_t val)
+{
+	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
+
+	return !(val & ~valid_bits);
+}
+
+static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
+{
+	switch (msr->index) {
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		if (!nested)
+			return 1;
+		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
+	default:
+		return 1;
+	}
+}
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct shared_msr_entry *msr;
+	u32 index;
+
+	switch (msr_info->index) {
+#ifdef CONFIG_X86_64
+	case MSR_FS_BASE:
+		msr_info->data = vmcs_readl(GUEST_FS_BASE);
+		break;
+	case MSR_GS_BASE:
+		msr_info->data = vmcs_readl(GUEST_GS_BASE);
+		break;
+	case MSR_KERNEL_GS_BASE:
+		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
+		break;
+#endif
+	case MSR_EFER:
+		return kvm_get_msr_common(vcpu, msr_info);
+	case MSR_IA32_TSX_CTRL:
+		if (!msr_info->host_initiated &&
+		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
+			return 1;
+		goto find_shared_msr;
+	case MSR_IA32_UMWAIT_CONTROL:
+		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
+			return 1;
+
+		msr_info->data = vmx->msr_ia32_umwait_control;
+		break;
+	case MSR_IA32_SPEC_CTRL:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+			return 1;
+
+		msr_info->data = to_vmx(vcpu)->spec_ctrl;
+		break;
+	case MSR_IA32_SYSENTER_CS:
+		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
+		break;
+	case MSR_IA32_SYSENTER_EIP:
+		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
+		break;
+	case MSR_IA32_SYSENTER_ESP:
+		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
+		break;
+	case MSR_IA32_BNDCFGS:
+		if (!kvm_mpx_supported() ||
+		    (!msr_info->host_initiated &&
+		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+			return 1;
+		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
+		break;
+	case MSR_IA32_MCG_EXT_CTL:
+		if (!msr_info->host_initiated &&
+		    !(vmx->msr_ia32_feature_control &
+		      FEATURE_CONTROL_LMCE))
+			return 1;
+		msr_info->data = vcpu->arch.mcg_ext_ctl;
+		break;
+	case MSR_IA32_FEATURE_CONTROL:
+		msr_info->data = vmx->msr_ia32_feature_control;
+		break;
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		if (!nested_vmx_allowed(vcpu))
+			return 1;
+		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
+				       &msr_info->data);
+	case MSR_IA32_RTIT_CTL:
+		if (pt_mode != PT_MODE_HOST_GUEST)
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.ctl;
+		break;
+	case MSR_IA32_RTIT_STATUS:
+		if (pt_mode != PT_MODE_HOST_GUEST)
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.status;
+		break;
+	case MSR_IA32_RTIT_CR3_MATCH:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			!intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_cr3_filtering))
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.cr3_match;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_BASE:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)))
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.output_base;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_MASK:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)))
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.output_mask;
+		break;
+	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_num_address_ranges)))
+			return 1;
+		if (is_noncanonical_address(data, vcpu))
+			return 1;
+		if (index % 2)
+			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
+		else
+			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
+		break;
+	case MSR_TSC_AUX:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+			return 1;
+		goto find_shared_msr;
+	default:
+	find_shared_msr:
+		msr = find_msr_entry(vmx, msr_info->index);
+		if (msr) {
+			msr_info->data = msr->data;
+			break;
+		}
+		return kvm_get_msr_common(vcpu, msr_info);
+	}
+
+	return 0;
+}
+
+/*
+ * Writes msr value into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct shared_msr_entry *msr;
+	int ret = 0;
+	u32 msr_index = msr_info->index;
+	u64 data = msr_info->data;
+	u32 index;
+
+	switch (msr_index) {
+	case MSR_EFER:
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+#ifdef CONFIG_X86_64
+	case MSR_FS_BASE:
+		vmx_segment_cache_clear(vmx);
+		vmcs_writel(GUEST_FS_BASE, data);
+		break;
+	case MSR_GS_BASE:
+		vmx_segment_cache_clear(vmx);
+		vmcs_writel(GUEST_GS_BASE, data);
+		break;
+	case MSR_KERNEL_GS_BASE:
+		vmx_write_guest_kernel_gs_base(vmx, data);
+		break;
+#endif
+	case MSR_IA32_SYSENTER_CS:
+		if (is_guest_mode(vcpu))
+			get_vmcs12(vcpu)->guest_sysenter_cs = data;
+		vmcs_write32(GUEST_SYSENTER_CS, data);
+		break;
+	case MSR_IA32_SYSENTER_EIP:
+		if (is_guest_mode(vcpu))
+			get_vmcs12(vcpu)->guest_sysenter_eip = data;
+		vmcs_writel(GUEST_SYSENTER_EIP, data);
+		break;
+	case MSR_IA32_SYSENTER_ESP:
+		if (is_guest_mode(vcpu))
+			get_vmcs12(vcpu)->guest_sysenter_esp = data;
+		vmcs_writel(GUEST_SYSENTER_ESP, data);
+		break;
+	case MSR_IA32_DEBUGCTLMSR:
+		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
+						VM_EXIT_SAVE_DEBUG_CONTROLS)
+			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
+
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+
+	case MSR_IA32_BNDCFGS:
+		if (!kvm_mpx_supported() ||
+		    (!msr_info->host_initiated &&
+		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+			return 1;
+		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
+		    (data & MSR_IA32_BNDCFGS_RSVD))
+			return 1;
+		vmcs_write64(GUEST_BNDCFGS, data);
+		break;
+	case MSR_IA32_UMWAIT_CONTROL:
+		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
+			return 1;
+
+		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
+		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
+			return 1;
+
+		vmx->msr_ia32_umwait_control = data;
+		break;
+	case MSR_IA32_SPEC_CTRL:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+			return 1;
+
+		/* The STIBP bit doesn't fault even if it's not advertised */
+		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
+			return 1;
+
+		vmx->spec_ctrl = data;
+
+		if (!data)
+			break;
+
+		/*
+		 * For non-nested:
+		 * When it's written (to non-zero) for the first time, pass
+		 * it through.
+		 *
+		 * For nested:
+		 * The handling of the MSR bitmap for L2 guests is done in
+		 * nested_vmx_prepare_msr_bitmap. We should not touch the
+		 * vmcs02.msr_bitmap here since it gets completely overwritten
+		 * in the merging. We update the vmcs01 here for L1 as well
+		 * since it will end up touching the MSR anyway now.
+		 */
+		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
+					      MSR_IA32_SPEC_CTRL,
+					      MSR_TYPE_RW);
+		break;
+	case MSR_IA32_TSX_CTRL:
+		if (!msr_info->host_initiated &&
+		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
+			return 1;
+		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
+			return 1;
+		goto find_shared_msr;
+	case MSR_IA32_PRED_CMD:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+			return 1;
+
+		if (data & ~PRED_CMD_IBPB)
+			return 1;
+
+		if (!data)
+			break;
+
+		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
+
+		/*
+		 * For non-nested:
+		 * When it's written (to non-zero) for the first time, pass
+		 * it through.
+		 *
+		 * For nested:
+		 * The handling of the MSR bitmap for L2 guests is done in
+		 * nested_vmx_prepare_msr_bitmap. We should not touch the
+		 * vmcs02.msr_bitmap here since it gets completely overwritten
+		 * in the merging.
+		 */
+		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
+					      MSR_TYPE_W);
+		break;
+	case MSR_IA32_CR_PAT:
+		if (!kvm_pat_valid(data))
+			return 1;
+
+		if (is_guest_mode(vcpu) &&
+		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+			get_vmcs12(vcpu)->guest_ia32_pat = data;
+
+		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+			vmcs_write64(GUEST_IA32_PAT, data);
+			vcpu->arch.pat = data;
+			break;
+		}
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+	case MSR_IA32_TSC_ADJUST:
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+	case MSR_IA32_MCG_EXT_CTL:
+		if ((!msr_info->host_initiated &&
+		     !(to_vmx(vcpu)->msr_ia32_feature_control &
+		       FEATURE_CONTROL_LMCE)) ||
+		    (data & ~MCG_EXT_CTL_LMCE_EN))
+			return 1;
+		vcpu->arch.mcg_ext_ctl = data;
+		break;
+	case MSR_IA32_FEATURE_CONTROL:
+		if (!vmx_feature_control_msr_valid(vcpu, data) ||
+		    (to_vmx(vcpu)->msr_ia32_feature_control &
+		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
+			return 1;
+		vmx->msr_ia32_feature_control = data;
+		if (msr_info->host_initiated && data == 0)
+			vmx_leave_nested(vcpu);
+		break;
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		if (!msr_info->host_initiated)
+			return 1; /* they are read-only */
+		if (!nested_vmx_allowed(vcpu))
+			return 1;
+		return vmx_set_vmx_msr(vcpu, msr_index, data);
+	case MSR_IA32_RTIT_CTL:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			vmx_rtit_ctl_check(vcpu, data) ||
+			vmx->nested.vmxon)
+			return 1;
+		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
+		vmx->pt_desc.guest.ctl = data;
+		pt_update_intercept_for_msr(vmx);
+		break;
+	case MSR_IA32_RTIT_STATUS:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(data & MSR_IA32_RTIT_STATUS_MASK))
+			return 1;
+		vmx->pt_desc.guest.status = data;
+		break;
+	case MSR_IA32_RTIT_CR3_MATCH:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			!intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_cr3_filtering))
+			return 1;
+		vmx->pt_desc.guest.cr3_match = data;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_BASE:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)) ||
+			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
+			return 1;
+		vmx->pt_desc.guest.output_base = data;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_MASK:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)))
+			return 1;
+		vmx->pt_desc.guest.output_mask = data;
+		break;
+	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_num_address_ranges)))
+			return 1;
+		if (is_noncanonical_address(data, vcpu))
+			return 1;
+		if (index % 2)
+			vmx->pt_desc.guest.addr_b[index / 2] = data;
+		else
+			vmx->pt_desc.guest.addr_a[index / 2] = data;
+		break;
+	case MSR_TSC_AUX:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+			return 1;
+		/* Check reserved bit, higher 32 bits should be zero */
+		if ((data >> 32) != 0)
+			return 1;
+		goto find_shared_msr;
+
+	default:
+	find_shared_msr:
+		msr = find_msr_entry(vmx, msr_index);
+		if (msr)
+			ret = vmx_set_guest_msr(vmx, msr, data);
+		else
+			ret = kvm_set_msr_common(vcpu, msr_info);
+	}
+
+	return ret;
+}
+
+static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+	kvm_register_mark_available(vcpu, reg);
+
+	switch (reg) {
+	case VCPU_REGS_RSP:
+		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+		break;
+	case VCPU_REGS_RIP:
+		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+		break;
+	case VCPU_EXREG_PDPTR:
+		if (enable_ept)
+			ept_save_pdptrs(vcpu);
+		break;
+	case VCPU_EXREG_CR3:
+		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
+			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		break;
+	}
+}
+
+static __init int cpu_has_kvm_support(void)
+{
+	return cpu_has_vmx();
+}
+
+static __init int vmx_disabled_by_bios(void)
+{
+	u64 msr;
+
+	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
+	if (msr & FEATURE_CONTROL_LOCKED) {
+		/* launched w/ TXT and VMX disabled */
+		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+			&& tboot_enabled())
+			return 1;
+		/* launched w/o TXT and VMX only enabled w/ TXT */
+		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+			&& !tboot_enabled()) {
+			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
+				"activate TXT before enabling KVM\n");
+			return 1;
+		}
+		/* launched w/o TXT and VMX disabled */
+		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+			&& !tboot_enabled())
+			return 1;
+	}
+
+	return 0;
+}
+
+static void kvm_cpu_vmxon(u64 addr)
+{
+	cr4_set_bits(X86_CR4_VMXE);
+	intel_pt_handle_vmx(1);
+
+	asm volatile ("vmxon %0" : : "m"(addr));
+}
+
+static int hardware_enable(void)
+{
+	int cpu = raw_smp_processor_id();
+	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+	u64 old, test_bits;
+
+	if (cr4_read_shadow() & X86_CR4_VMXE)
+		return -EBUSY;
+
+	/*
+	 * This can happen if we hot-added a CPU but failed to allocate
+	 * VP assist page for it.
+	 */
+	if (static_branch_unlikely(&enable_evmcs) &&
+	    !hv_get_vp_assist_page(cpu))
+		return -EFAULT;
+
+	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
+	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+
+	/*
+	 * Now we can enable the vmclear operation in kdump
+	 * since the loaded_vmcss_on_cpu list on this cpu
+	 * has been initialized.
+	 *
+	 * Though the cpu is not in VMX operation now, there
+	 * is no problem to enable the vmclear operation
+	 * for the loaded_vmcss_on_cpu list is empty!
+	 */
+	crash_enable_local_vmclear(cpu);
+
+	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
+
+	test_bits = FEATURE_CONTROL_LOCKED;
+	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+	if (tboot_enabled())
+		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
+
+	if ((old & test_bits) != test_bits) {
+		/* enable and lock */
+		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
+	}
+	kvm_cpu_vmxon(phys_addr);
+	if (enable_ept)
+		ept_sync_global();
+
+	return 0;
+}
+
+static void vmclear_local_loaded_vmcss(void)
+{
+	int cpu = raw_smp_processor_id();
+	struct loaded_vmcs *v, *n;
+
+	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+				 loaded_vmcss_on_cpu_link)
+		__loaded_vmcs_clear(v);
+}
+
+
+/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+ * tricks.
+ */
+static void kvm_cpu_vmxoff(void)
+{
+	asm volatile (__ex("vmxoff"));
+
+	intel_pt_handle_vmx(0);
+	cr4_clear_bits(X86_CR4_VMXE);
+}
+
+static void hardware_disable(void)
+{
+	vmclear_local_loaded_vmcss();
+	kvm_cpu_vmxoff();
+}
+
+static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+				      u32 msr, u32 *result)
+{
+	u32 vmx_msr_low, vmx_msr_high;
+	u32 ctl = ctl_min | ctl_opt;
+
+	rdmsr(msr, vmx_msr_low, vmx_msr_high);
+
+	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
+
+	/* Ensure minimum (required) set of control bits are supported. */
+	if (ctl_min & ~ctl)
+		return -EIO;
+
+	*result = ctl;
+	return 0;
+}
+
+static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
+				    struct vmx_capability *vmx_cap)
+{
+	u32 vmx_msr_low, vmx_msr_high;
+	u32 min, opt, min2, opt2;
+	u32 _pin_based_exec_control = 0;
+	u32 _cpu_based_exec_control = 0;
+	u32 _cpu_based_2nd_exec_control = 0;
+	u32 _vmexit_control = 0;
+	u32 _vmentry_control = 0;
+
+	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
+	min = CPU_BASED_HLT_EXITING |
+#ifdef CONFIG_X86_64
+	      CPU_BASED_CR8_LOAD_EXITING |
+	      CPU_BASED_CR8_STORE_EXITING |
+#endif
+	      CPU_BASED_CR3_LOAD_EXITING |
+	      CPU_BASED_CR3_STORE_EXITING |
+	      CPU_BASED_UNCOND_IO_EXITING |
+	      CPU_BASED_MOV_DR_EXITING |
+	      CPU_BASED_USE_TSC_OFFSETTING |
+	      CPU_BASED_MWAIT_EXITING |
+	      CPU_BASED_MONITOR_EXITING |
+	      CPU_BASED_INVLPG_EXITING |
+	      CPU_BASED_RDPMC_EXITING;
+
+	opt = CPU_BASED_TPR_SHADOW |
+	      CPU_BASED_USE_MSR_BITMAPS |
+	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+				&_cpu_based_exec_control) < 0)
+		return -EIO;
+#ifdef CONFIG_X86_64
+	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+					   ~CPU_BASED_CR8_STORE_EXITING;
+#endif
+	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+		min2 = 0;
+		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+			SECONDARY_EXEC_WBINVD_EXITING |
+			SECONDARY_EXEC_ENABLE_VPID |
+			SECONDARY_EXEC_ENABLE_EPT |
+			SECONDARY_EXEC_UNRESTRICTED_GUEST |
+			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+			SECONDARY_EXEC_DESC |
+			SECONDARY_EXEC_RDTSCP |
+			SECONDARY_EXEC_ENABLE_INVPCID |
+			SECONDARY_EXEC_APIC_REGISTER_VIRT |
+			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+			SECONDARY_EXEC_SHADOW_VMCS |
+			SECONDARY_EXEC_XSAVES |
+			SECONDARY_EXEC_RDSEED_EXITING |
+			SECONDARY_EXEC_RDRAND_EXITING |
+			SECONDARY_EXEC_ENABLE_PML |
+			SECONDARY_EXEC_TSC_SCALING |
+			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
+			SECONDARY_EXEC_PT_USE_GPA |
+			SECONDARY_EXEC_PT_CONCEAL_VMX |
+			SECONDARY_EXEC_ENABLE_VMFUNC |
+			SECONDARY_EXEC_ENCLS_EXITING;
+		if (adjust_vmx_controls(min2, opt2,
+					MSR_IA32_VMX_PROCBASED_CTLS2,
+					&_cpu_based_2nd_exec_control) < 0)
+			return -EIO;
+	}
+#ifndef CONFIG_X86_64
+	if (!(_cpu_based_2nd_exec_control &
+				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+#endif
+
+	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+		_cpu_based_2nd_exec_control &= ~(
+				SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+
+	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
+		&vmx_cap->ept, &vmx_cap->vpid);
+
+	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+		   enabled */
+		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+					     CPU_BASED_CR3_STORE_EXITING |
+					     CPU_BASED_INVLPG_EXITING);
+	} else if (vmx_cap->ept) {
+		vmx_cap->ept = 0;
+		pr_warn_once("EPT CAP should not exist if not support "
+				"1-setting enable EPT VM-execution control\n");
+	}
+	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
+		vmx_cap->vpid) {
+		vmx_cap->vpid = 0;
+		pr_warn_once("VPID CAP should not exist if not support "
+				"1-setting enable VPID VM-execution control\n");
+	}
+
+	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
+#ifdef CONFIG_X86_64
+	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#endif
+	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
+	      VM_EXIT_LOAD_IA32_PAT |
+	      VM_EXIT_LOAD_IA32_EFER |
+	      VM_EXIT_CLEAR_BNDCFGS |
+	      VM_EXIT_PT_CONCEAL_PIP |
+	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+				&_vmexit_control) < 0)
+		return -EIO;
+
+	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
+		 PIN_BASED_VMX_PREEMPTION_TIMER;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+				&_pin_based_exec_control) < 0)
+		return -EIO;
+
+	if (cpu_has_broken_vmx_preemption_timer())
+		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+	if (!(_cpu_based_2nd_exec_control &
+		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
+		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+
+	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
+	      VM_ENTRY_LOAD_IA32_PAT |
+	      VM_ENTRY_LOAD_IA32_EFER |
+	      VM_ENTRY_LOAD_BNDCFGS |
+	      VM_ENTRY_PT_CONCEAL_PIP |
+	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+				&_vmentry_control) < 0)
+		return -EIO;
+
+	/*
+	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
+	 * can't be used due to an errata where VM Exit may incorrectly clear
+	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
+	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+	 */
+	if (boot_cpu_data.x86 == 0x6) {
+		switch (boot_cpu_data.x86_model) {
+		case 26: /* AAK155 */
+		case 30: /* AAP115 */
+		case 37: /* AAT100 */
+		case 44: /* BC86,AAY89,BD102 */
+		case 46: /* BA97 */
+			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+					"does not work properly. Using workaround\n");
+			break;
+		default:
+			break;
+		}
+	}
+
+
+	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+
+	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+		return -EIO;
+
+#ifdef CONFIG_X86_64
+	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+	if (vmx_msr_high & (1u<<16))
+		return -EIO;
+#endif
+
+	/* Require Write-Back (WB) memory type for VMCS accesses. */
+	if (((vmx_msr_high >> 18) & 15) != 6)
+		return -EIO;
+
+	vmcs_conf->size = vmx_msr_high & 0x1fff;
+	vmcs_conf->order = get_order(vmcs_conf->size);
+	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
+
+	vmcs_conf->revision_id = vmx_msr_low;
+
+	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+	vmcs_conf->vmexit_ctrl         = _vmexit_control;
+	vmcs_conf->vmentry_ctrl        = _vmentry_control;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		evmcs_sanitize_exec_ctrls(vmcs_conf);
+
+	return 0;
+}
+
+struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
+{
+	int node = cpu_to_node(cpu);
+	struct page *pages;
+	struct vmcs *vmcs;
+
+	pages = __alloc_pages_node(node, flags, vmcs_config.order);
+	if (!pages)
+		return NULL;
+	vmcs = page_address(pages);
+	memset(vmcs, 0, vmcs_config.size);
+
+	/* KVM supports Enlightened VMCS v1 only */
+	if (static_branch_unlikely(&enable_evmcs))
+		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
+	else
+		vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+	if (shadow)
+		vmcs->hdr.shadow_vmcs = 1;
+	return vmcs;
+}
+
+void free_vmcs(struct vmcs *vmcs)
+{
+	free_pages((unsigned long)vmcs, vmcs_config.order);
+}
+
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+	if (!loaded_vmcs->vmcs)
+		return;
+	loaded_vmcs_clear(loaded_vmcs);
+	free_vmcs(loaded_vmcs->vmcs);
+	loaded_vmcs->vmcs = NULL;
+	if (loaded_vmcs->msr_bitmap)
+		free_page((unsigned long)loaded_vmcs->msr_bitmap);
+	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
+}
+
+int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+	loaded_vmcs->vmcs = alloc_vmcs(false);
+	if (!loaded_vmcs->vmcs)
+		return -ENOMEM;
+
+	loaded_vmcs->shadow_vmcs = NULL;
+	loaded_vmcs->hv_timer_soft_disabled = false;
+	loaded_vmcs_init(loaded_vmcs);
+
+	if (cpu_has_vmx_msr_bitmap()) {
+		loaded_vmcs->msr_bitmap = (unsigned long *)
+				__get_free_page(GFP_KERNEL_ACCOUNT);
+		if (!loaded_vmcs->msr_bitmap)
+			goto out_vmcs;
+		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
+
+		if (IS_ENABLED(CONFIG_HYPERV) &&
+		    static_branch_unlikely(&enable_evmcs) &&
+		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
+			struct hv_enlightened_vmcs *evmcs =
+				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
+
+			evmcs->hv_enlightenments_control.msr_bitmap = 1;
+		}
+	}
+
+	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
+	memset(&loaded_vmcs->controls_shadow, 0,
+		sizeof(struct vmcs_controls_shadow));
+
+	return 0;
+
+out_vmcs:
+	free_loaded_vmcs(loaded_vmcs);
+	return -ENOMEM;
+}
+
+static void free_kvm_area(void)
+{
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		free_vmcs(per_cpu(vmxarea, cpu));
+		per_cpu(vmxarea, cpu) = NULL;
+	}
+}
+
+static __init int alloc_kvm_area(void)
+{
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		struct vmcs *vmcs;
+
+		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
+		if (!vmcs) {
+			free_kvm_area();
+			return -ENOMEM;
+		}
+
+		/*
+		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
+		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
+		 * revision_id reported by MSR_IA32_VMX_BASIC.
+		 *
+		 * However, even though not explicitly documented by
+		 * TLFS, VMXArea passed as VMXON argument should
+		 * still be marked with revision_id reported by
+		 * physical CPU.
+		 */
+		if (static_branch_unlikely(&enable_evmcs))
+			vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+		per_cpu(vmxarea, cpu) = vmcs;
+	}
+	return 0;
+}
+
+static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+		struct kvm_segment *save)
+{
+	if (!emulate_invalid_guest_state) {
+		/*
+		 * CS and SS RPL should be equal during guest entry according
+		 * to VMX spec, but in reality it is not always so. Since vcpu
+		 * is in the middle of the transition from real mode to
+		 * protected mode it is safe to assume that RPL 0 is a good
+		 * default value.
+		 */
+		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+			save->selector &= ~SEGMENT_RPL_MASK;
+		save->dpl = save->selector & SEGMENT_RPL_MASK;
+		save->s = 1;
+	}
+	vmx_set_segment(vcpu, save, seg);
+}
+
+static void enter_pmode(struct kvm_vcpu *vcpu)
+{
+	unsigned long flags;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * Update real mode segment cache. It may be not up-to-date if sement
+	 * register was written while vcpu was in a guest mode.
+	 */
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+	vmx->rmode.vm86_active = 0;
+
+	vmx_segment_cache_clear(vmx);
+
+	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+
+	flags = vmcs_readl(GUEST_RFLAGS);
+	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+	vmcs_writel(GUEST_RFLAGS, flags);
+
+	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+
+	update_exception_bitmap(vcpu);
+
+	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+}
+
+static void fix_rmode_seg(int seg, struct kvm_segment *save)
+{
+	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+	struct kvm_segment var = *save;
+
+	var.dpl = 0x3;
+	if (seg == VCPU_SREG_CS)
+		var.type = 0x3;
+
+	if (!emulate_invalid_guest_state) {
+		var.selector = var.base >> 4;
+		var.base = var.base & 0xffff0;
+		var.limit = 0xffff;
+		var.g = 0;
+		var.db = 0;
+		var.present = 1;
+		var.s = 1;
+		var.l = 0;
+		var.unusable = 0;
+		var.type = 0x3;
+		var.avl = 0;
+		if (save->base & 0xf)
+			printk_once(KERN_WARNING "kvm: segment base is not "
+					"paragraph aligned when entering "
+					"protected mode (seg=%d)", seg);
+	}
+
+	vmcs_write16(sf->selector, var.selector);
+	vmcs_writel(sf->base, var.base);
+	vmcs_write32(sf->limit, var.limit);
+	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+}
+
+static void enter_rmode(struct kvm_vcpu *vcpu)
+{
+	unsigned long flags;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
+
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+	vmx->rmode.vm86_active = 1;
+
+	/*
+	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+	 * vcpu. Warn the user that an update is overdue.
+	 */
+	if (!kvm_vmx->tss_addr)
+		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+			     "called before entering vcpu\n");
+
+	vmx_segment_cache_clear(vmx);
+
+	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
+	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+	flags = vmcs_readl(GUEST_RFLAGS);
+	vmx->rmode.save_rflags = flags;
+
+	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+
+	vmcs_writel(GUEST_RFLAGS, flags);
+	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+	update_exception_bitmap(vcpu);
+
+	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+
+	kvm_mmu_reset_context(vcpu);
+}
+
+void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
+
+	if (!msr)
+		return;
+
+	vcpu->arch.efer = efer;
+	if (efer & EFER_LMA) {
+		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+		msr->data = efer;
+	} else {
+		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+
+		msr->data = efer & ~EFER_LME;
+	}
+	setup_msrs(vmx);
+}
+
+#ifdef CONFIG_X86_64
+
+static void enter_lmode(struct kvm_vcpu *vcpu)
+{
+	u32 guest_tr_ar;
+
+	vmx_segment_cache_clear(to_vmx(vcpu));
+
+	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
+		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+				     __func__);
+		vmcs_write32(GUEST_TR_AR_BYTES,
+			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
+			     | VMX_AR_TYPE_BUSY_64_TSS);
+	}
+	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+}
+
+static void exit_lmode(struct kvm_vcpu *vcpu)
+{
+	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+}
+
+#endif
+
+static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
+{
+	int vpid = to_vmx(vcpu)->vpid;
+
+	if (!vpid_sync_vcpu_addr(vpid, addr))
+		vpid_sync_context(vpid);
+
+	/*
+	 * If VPIDs are not supported or enabled, then the above is a no-op.
+	 * But we don't really need a TLB flush in that case anyway, because
+	 * each VM entry/exit includes an implicit flush when VPID is 0.
+	 */
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+{
+	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+
+	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
+	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
+}
+
+static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+{
+	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+
+	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
+	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
+}
+
+static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
+		return;
+
+	if (is_pae_paging(vcpu)) {
+		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+	}
+}
+
+void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+	if (is_pae_paging(vcpu)) {
+		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+	}
+
+	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
+}
+
+static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
+					unsigned long cr0,
+					struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
+		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
+	if (!(cr0 & X86_CR0_PG)) {
+		/* From paging/starting to nonpaging */
+		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
+					  CPU_BASED_CR3_STORE_EXITING);
+		vcpu->arch.cr0 = cr0;
+		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+	} else if (!is_paging(vcpu)) {
+		/* From nonpaging to paging */
+		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
+					    CPU_BASED_CR3_STORE_EXITING);
+		vcpu->arch.cr0 = cr0;
+		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+	}
+
+	if (!(cr0 & X86_CR0_WP))
+		*hw_cr0 &= ~X86_CR0_WP;
+}
+
+void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long hw_cr0;
+
+	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
+	if (enable_unrestricted_guest)
+		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+	else {
+		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+
+		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+			enter_pmode(vcpu);
+
+		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+			enter_rmode(vcpu);
+	}
+
+#ifdef CONFIG_X86_64
+	if (vcpu->arch.efer & EFER_LME) {
+		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+			enter_lmode(vcpu);
+		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+			exit_lmode(vcpu);
+	}
+#endif
+
+	if (enable_ept && !enable_unrestricted_guest)
+		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
+
+	vmcs_writel(CR0_READ_SHADOW, cr0);
+	vmcs_writel(GUEST_CR0, hw_cr0);
+	vcpu->arch.cr0 = cr0;
+
+	/* depends on vcpu->arch.cr0 to be set to a new value */
+	vmx->emulation_required = emulation_required(vcpu);
+}
+
+static int get_ept_level(struct kvm_vcpu *vcpu)
+{
+	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
+		return 5;
+	return 4;
+}
+
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
+{
+	u64 eptp = VMX_EPTP_MT_WB;
+
+	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
+
+	if (enable_ept_ad_bits &&
+	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
+		eptp |= VMX_EPTP_AD_ENABLE_BIT;
+	eptp |= (root_hpa & PAGE_MASK);
+
+	return eptp;
+}
+
+void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+	struct kvm *kvm = vcpu->kvm;
+	bool update_guest_cr3 = true;
+	unsigned long guest_cr3;
+	u64 eptp;
+
+	guest_cr3 = cr3;
+	if (enable_ept) {
+		eptp = construct_eptp(vcpu, cr3);
+		vmcs_write64(EPT_POINTER, eptp);
+
+		if (kvm_x86_ops->tlb_remote_flush) {
+			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+			to_vmx(vcpu)->ept_pointer = eptp;
+			to_kvm_vmx(kvm)->ept_pointers_match
+				= EPT_POINTERS_CHECK;
+			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+		}
+
+		/* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
+		if (is_guest_mode(vcpu))
+			update_guest_cr3 = false;
+		else if (!enable_unrestricted_guest && !is_paging(vcpu))
+			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
+		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+			guest_cr3 = vcpu->arch.cr3;
+		else /* vmcs01.GUEST_CR3 is already up-to-date. */
+			update_guest_cr3 = false;
+		ept_load_pdptrs(vcpu);
+	}
+
+	if (update_guest_cr3)
+		vmcs_writel(GUEST_CR3, guest_cr3);
+}
+
+int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	/*
+	 * Pass through host's Machine Check Enable value to hw_cr4, which
+	 * is in force while we are in guest mode.  Do not let guests control
+	 * this bit, even if host CR4.MCE == 0.
+	 */
+	unsigned long hw_cr4;
+
+	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
+	if (enable_unrestricted_guest)
+		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
+	else if (vmx->rmode.vm86_active)
+		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
+	else
+		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
+
+	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
+		if (cr4 & X86_CR4_UMIP) {
+			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
+			hw_cr4 &= ~X86_CR4_UMIP;
+		} else if (!is_guest_mode(vcpu) ||
+			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
+			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
+		}
+	}
+
+	if (cr4 & X86_CR4_VMXE) {
+		/*
+		 * To use VMXON (and later other VMX instructions), a guest
+		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
+		 * So basically the check on whether to allow nested VMX
+		 * is here.  We operate under the default treatment of SMM,
+		 * so VMX cannot be enabled under SMM.
+		 */
+		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
+			return 1;
+	}
+
+	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
+		return 1;
+
+	vcpu->arch.cr4 = cr4;
+
+	if (!enable_unrestricted_guest) {
+		if (enable_ept) {
+			if (!is_paging(vcpu)) {
+				hw_cr4 &= ~X86_CR4_PAE;
+				hw_cr4 |= X86_CR4_PSE;
+			} else if (!(cr4 & X86_CR4_PAE)) {
+				hw_cr4 &= ~X86_CR4_PAE;
+			}
+		}
+
+		/*
+		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
+		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
+		 * to be manually disabled when guest switches to non-paging
+		 * mode.
+		 *
+		 * If !enable_unrestricted_guest, the CPU is always running
+		 * with CR0.PG=1 and CR4 needs to be modified.
+		 * If enable_unrestricted_guest, the CPU automatically
+		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
+		 */
+		if (!is_paging(vcpu))
+			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
+	}
+
+	vmcs_writel(CR4_READ_SHADOW, cr4);
+	vmcs_writel(GUEST_CR4, hw_cr4);
+	return 0;
+}
+
+void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 ar;
+
+	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+		*var = vmx->rmode.segs[seg];
+		if (seg == VCPU_SREG_TR
+		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+			return;
+		var->base = vmx_read_guest_seg_base(vmx, seg);
+		var->selector = vmx_read_guest_seg_selector(vmx, seg);
+		return;
+	}
+	var->base = vmx_read_guest_seg_base(vmx, seg);
+	var->limit = vmx_read_guest_seg_limit(vmx, seg);
+	var->selector = vmx_read_guest_seg_selector(vmx, seg);
+	ar = vmx_read_guest_seg_ar(vmx, seg);
+	var->unusable = (ar >> 16) & 1;
+	var->type = ar & 15;
+	var->s = (ar >> 4) & 1;
+	var->dpl = (ar >> 5) & 3;
+	/*
+	 * Some userspaces do not preserve unusable property. Since usable
+	 * segment has to be present according to VMX spec we can use present
+	 * property to amend userspace bug by making unusable segment always
+	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
+	 * segment as unusable.
+	 */
+	var->present = !var->unusable;
+	var->avl = (ar >> 12) & 1;
+	var->l = (ar >> 13) & 1;
+	var->db = (ar >> 14) & 1;
+	var->g = (ar >> 15) & 1;
+}
+
+static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+	struct kvm_segment s;
+
+	if (to_vmx(vcpu)->rmode.vm86_active) {
+		vmx_get_segment(vcpu, &s, seg);
+		return s.base;
+	}
+	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+}
+
+int vmx_get_cpl(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (unlikely(vmx->rmode.vm86_active))
+		return 0;
+	else {
+		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+		return VMX_AR_DPL(ar);
+	}
+}
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var)
+{
+	u32 ar;
+
+	if (var->unusable || !var->present)
+		ar = 1 << 16;
+	else {
+		ar = var->type & 15;
+		ar |= (var->s & 1) << 4;
+		ar |= (var->dpl & 3) << 5;
+		ar |= (var->present & 1) << 7;
+		ar |= (var->avl & 1) << 12;
+		ar |= (var->l & 1) << 13;
+		ar |= (var->db & 1) << 14;
+		ar |= (var->g & 1) << 15;
+	}
+
+	return ar;
+}
+
+void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+
+	vmx_segment_cache_clear(vmx);
+
+	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+		vmx->rmode.segs[seg] = *var;
+		if (seg == VCPU_SREG_TR)
+			vmcs_write16(sf->selector, var->selector);
+		else if (var->s)
+			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+		goto out;
+	}
+
+	vmcs_writel(sf->base, var->base);
+	vmcs_write32(sf->limit, var->limit);
+	vmcs_write16(sf->selector, var->selector);
+
+	/*
+	 *   Fix the "Accessed" bit in AR field of segment registers for older
+	 * qemu binaries.
+	 *   IA32 arch specifies that at the time of processor reset the
+	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
+	 * is setting it to 0 in the userland code. This causes invalid guest
+	 * state vmexit when "unrestricted guest" mode is turned on.
+	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
+	 * tree. Newer qemu binaries with that qemu fix would not need this
+	 * kvm hack.
+	 */
+	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
+		var->type |= 0x1; /* Accessed */
+
+	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+
+out:
+	vmx->emulation_required = emulation_required(vcpu);
+}
+
+static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+
+	*db = (ar >> 14) & 1;
+	*l = (ar >> 13) & 1;
+}
+
+static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+	dt->address = vmcs_readl(GUEST_IDTR_BASE);
+}
+
+static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+	vmcs_writel(GUEST_IDTR_BASE, dt->address);
+}
+
+static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+	dt->address = vmcs_readl(GUEST_GDTR_BASE);
+}
+
+static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+	vmcs_writel(GUEST_GDTR_BASE, dt->address);
+}
+
+static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+	struct kvm_segment var;
+	u32 ar;
+
+	vmx_get_segment(vcpu, &var, seg);
+	var.dpl = 0x3;
+	if (seg == VCPU_SREG_CS)
+		var.type = 0x3;
+	ar = vmx_segment_access_rights(&var);
+
+	if (var.base != (var.selector << 4))
+		return false;
+	if (var.limit != 0xffff)
+		return false;
+	if (ar != 0xf3)
+		return false;
+
+	return true;
+}
+
+static bool code_segment_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment cs;
+	unsigned int cs_rpl;
+
+	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+
+	if (cs.unusable)
+		return false;
+	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
+		return false;
+	if (!cs.s)
+		return false;
+	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
+		if (cs.dpl > cs_rpl)
+			return false;
+	} else {
+		if (cs.dpl != cs_rpl)
+			return false;
+	}
+	if (!cs.present)
+		return false;
+
+	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+	return true;
+}
+
+static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment ss;
+	unsigned int ss_rpl;
+
+	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+
+	if (ss.unusable)
+		return true;
+	if (ss.type != 3 && ss.type != 7)
+		return false;
+	if (!ss.s)
+		return false;
+	if (ss.dpl != ss_rpl) /* DPL != RPL */
+		return false;
+	if (!ss.present)
+		return false;
+
+	return true;
+}
+
+static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+	struct kvm_segment var;
+	unsigned int rpl;
+
+	vmx_get_segment(vcpu, &var, seg);
+	rpl = var.selector & SEGMENT_RPL_MASK;
+
+	if (var.unusable)
+		return true;
+	if (!var.s)
+		return false;
+	if (!var.present)
+		return false;
+	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
+		if (var.dpl < rpl) /* DPL < RPL */
+			return false;
+	}
+
+	/* TODO: Add other members to kvm_segment_field to allow checking for other access
+	 * rights flags
+	 */
+	return true;
+}
+
+static bool tr_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment tr;
+
+	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+
+	if (tr.unusable)
+		return false;
+	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
+		return false;
+	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+		return false;
+	if (!tr.present)
+		return false;
+
+	return true;
+}
+
+static bool ldtr_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment ldtr;
+
+	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+
+	if (ldtr.unusable)
+		return true;
+	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
+		return false;
+	if (ldtr.type != 2)
+		return false;
+	if (!ldtr.present)
+		return false;
+
+	return true;
+}
+
+static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment cs, ss;
+
+	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+
+	return ((cs.selector & SEGMENT_RPL_MASK) ==
+		 (ss.selector & SEGMENT_RPL_MASK));
+}
+
+/*
+ * Check if guest state is valid. Returns true if valid, false if
+ * not.
+ * We assume that registers are always usable
+ */
+static bool guest_state_valid(struct kvm_vcpu *vcpu)
+{
+	if (enable_unrestricted_guest)
+		return true;
+
+	/* real mode guest state checks */
+	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+			return false;
+	} else {
+	/* protected mode guest state checks */
+		if (!cs_ss_rpl_check(vcpu))
+			return false;
+		if (!code_segment_valid(vcpu))
+			return false;
+		if (!stack_segment_valid(vcpu))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+			return false;
+		if (!tr_valid(vcpu))
+			return false;
+		if (!ldtr_valid(vcpu))
+			return false;
+	}
+	/* TODO:
+	 * - Add checks on RIP
+	 * - Add checks on RFLAGS
+	 */
+
+	return true;
+}
+
+static int init_rmode_tss(struct kvm *kvm)
+{
+	gfn_t fn;
+	u16 data = 0;
+	int idx, r;
+
+	idx = srcu_read_lock(&kvm->srcu);
+	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
+	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+	r = kvm_write_guest_page(kvm, fn++, &data,
+			TSS_IOPB_BASE_OFFSET, sizeof(u16));
+	if (r < 0)
+		goto out;
+	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	data = ~0;
+	r = kvm_write_guest_page(kvm, fn, &data,
+				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+				 sizeof(u8));
+out:
+	srcu_read_unlock(&kvm->srcu, idx);
+	return r;
+}
+
+static int init_rmode_identity_map(struct kvm *kvm)
+{
+	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
+	int i, idx, r = 0;
+	kvm_pfn_t identity_map_pfn;
+	u32 tmp;
+
+	/* Protect kvm_vmx->ept_identity_pagetable_done. */
+	mutex_lock(&kvm->slots_lock);
+
+	if (likely(kvm_vmx->ept_identity_pagetable_done))
+		goto out2;
+
+	if (!kvm_vmx->ept_identity_map_addr)
+		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
+
+	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
+				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
+	if (r < 0)
+		goto out2;
+
+	idx = srcu_read_lock(&kvm->srcu);
+	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	/* Set up identity-mapping pagetable for EPT in real mode */
+	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+		r = kvm_write_guest_page(kvm, identity_map_pfn,
+				&tmp, i * sizeof(tmp), sizeof(tmp));
+		if (r < 0)
+			goto out;
+	}
+	kvm_vmx->ept_identity_pagetable_done = true;
+
+out:
+	srcu_read_unlock(&kvm->srcu, idx);
+
+out2:
+	mutex_unlock(&kvm->slots_lock);
+	return r;
+}
+
+static void seg_setup(int seg)
+{
+	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+	unsigned int ar;
+
+	vmcs_write16(sf->selector, 0);
+	vmcs_writel(sf->base, 0);
+	vmcs_write32(sf->limit, 0xffff);
+	ar = 0x93;
+	if (seg == VCPU_SREG_CS)
+		ar |= 0x08; /* code segment */
+
+	vmcs_write32(sf->ar_bytes, ar);
+}
+
+static int alloc_apic_access_page(struct kvm *kvm)
+{
+	struct page *page;
+	int r = 0;
+
+	mutex_lock(&kvm->slots_lock);
+	if (kvm->arch.apic_access_page_done)
+		goto out;
+	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
+	if (r)
+		goto out;
+
+	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+	if (is_error_page(page)) {
+		r = -EFAULT;
+		goto out;
+	}
+
+	/*
+	 * Do not pin the page in memory, so that memory hot-unplug
+	 * is able to migrate it.
+	 */
+	put_page(page);
+	kvm->arch.apic_access_page_done = true;
+out:
+	mutex_unlock(&kvm->slots_lock);
+	return r;
+}
+
+int allocate_vpid(void)
+{
+	int vpid;
+
+	if (!enable_vpid)
+		return 0;
+	spin_lock(&vmx_vpid_lock);
+	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+	if (vpid < VMX_NR_VPIDS)
+		__set_bit(vpid, vmx_vpid_bitmap);
+	else
+		vpid = 0;
+	spin_unlock(&vmx_vpid_lock);
+	return vpid;
+}
+
+void free_vpid(int vpid)
+{
+	if (!enable_vpid || vpid == 0)
+		return;
+	spin_lock(&vmx_vpid_lock);
+	__clear_bit(vpid, vmx_vpid_bitmap);
+	spin_unlock(&vmx_vpid_lock);
+}
+
+static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+							  u32 msr, int type)
+{
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		evmcs_touch_msr_bitmap();
+
+	/*
+	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+	 * have the write-low and read-high bitmap offsets the wrong way round.
+	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+	 */
+	if (msr <= 0x1fff) {
+		if (type & MSR_TYPE_R)
+			/* read-low */
+			__clear_bit(msr, msr_bitmap + 0x000 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-low */
+			__clear_bit(msr, msr_bitmap + 0x800 / f);
+
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		if (type & MSR_TYPE_R)
+			/* read-high */
+			__clear_bit(msr, msr_bitmap + 0x400 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-high */
+			__clear_bit(msr, msr_bitmap + 0xc00 / f);
+
+	}
+}
+
+static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
+							 u32 msr, int type)
+{
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		evmcs_touch_msr_bitmap();
+
+	/*
+	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+	 * have the write-low and read-high bitmap offsets the wrong way round.
+	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+	 */
+	if (msr <= 0x1fff) {
+		if (type & MSR_TYPE_R)
+			/* read-low */
+			__set_bit(msr, msr_bitmap + 0x000 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-low */
+			__set_bit(msr, msr_bitmap + 0x800 / f);
+
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		if (type & MSR_TYPE_R)
+			/* read-high */
+			__set_bit(msr, msr_bitmap + 0x400 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-high */
+			__set_bit(msr, msr_bitmap + 0xc00 / f);
+
+	}
+}
+
+static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
+			     			      u32 msr, int type, bool value)
+{
+	if (value)
+		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
+	else
+		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
+}
+
+static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
+{
+	u8 mode = 0;
+
+	if (cpu_has_secondary_exec_ctrls() &&
+	    (secondary_exec_controls_get(to_vmx(vcpu)) &
+	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
+		mode |= MSR_BITMAP_MODE_X2APIC;
+		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
+			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
+	}
+
+	return mode;
+}
+
+static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
+					 u8 mode)
+{
+	int msr;
+
+	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+		unsigned word = msr / BITS_PER_LONG;
+		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
+		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
+	}
+
+	if (mode & MSR_BITMAP_MODE_X2APIC) {
+		/*
+		 * TPR reads and writes can be virtualized even if virtual interrupt
+		 * delivery is not in use.
+		 */
+		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
+		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
+			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
+			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
+			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
+		}
+	}
+}
+
+void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+	u8 mode = vmx_msr_bitmap_mode(vcpu);
+	u8 changed = mode ^ vmx->msr_bitmap_mode;
+
+	if (!changed)
+		return;
+
+	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
+		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
+
+	vmx->msr_bitmap_mode = mode;
+}
+
+void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
+{
+	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
+	u32 i;
+
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
+							MSR_TYPE_RW, flag);
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
+							MSR_TYPE_RW, flag);
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
+							MSR_TYPE_RW, flag);
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
+							MSR_TYPE_RW, flag);
+	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
+		vmx_set_intercept_for_msr(msr_bitmap,
+			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
+		vmx_set_intercept_for_msr(msr_bitmap,
+			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
+	}
+}
+
+static bool vmx_get_enable_apicv(struct kvm *kvm)
+{
+	return enable_apicv;
+}
+
+static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	void *vapic_page;
+	u32 vppr;
+	int rvi;
+
+	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
+		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
+		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
+		return false;
+
+	rvi = vmx_get_rvi();
+
+	vapic_page = vmx->nested.virtual_apic_map.hva;
+	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
+
+	return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
+						     bool nested)
+{
+#ifdef CONFIG_SMP
+	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
+
+	if (vcpu->mode == IN_GUEST_MODE) {
+		/*
+		 * The vector of interrupt to be delivered to vcpu had
+		 * been set in PIR before this function.
+		 *
+		 * Following cases will be reached in this block, and
+		 * we always send a notification event in all cases as
+		 * explained below.
+		 *
+		 * Case 1: vcpu keeps in non-root mode. Sending a
+		 * notification event posts the interrupt to vcpu.
+		 *
+		 * Case 2: vcpu exits to root mode and is still
+		 * runnable. PIR will be synced to vIRR before the
+		 * next vcpu entry. Sending a notification event in
+		 * this case has no effect, as vcpu is not in root
+		 * mode.
+		 *
+		 * Case 3: vcpu exits to root mode and is blocked.
+		 * vcpu_block() has already synced PIR to vIRR and
+		 * never blocks vcpu if vIRR is not cleared. Therefore,
+		 * a blocked vcpu here does not wait for any requested
+		 * interrupts in PIR, and sending a notification event
+		 * which has no effect is safe here.
+		 */
+
+		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
+		return true;
+	}
+#endif
+	return false;
+}
+
+static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+						int vector)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (is_guest_mode(vcpu) &&
+	    vector == vmx->nested.posted_intr_nv) {
+		/*
+		 * If a posted intr is not recognized by hardware,
+		 * we will accomplish it in the next vmentry.
+		 */
+		vmx->nested.pi_pending = true;
+		kvm_make_request(KVM_REQ_EVENT, vcpu);
+		/* the PIR and ON have been set by L1. */
+		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
+			kvm_vcpu_kick(vcpu);
+		return 0;
+	}
+	return -1;
+}
+/*
+ * Send interrupt to vcpu via posted interrupt way.
+ * 1. If target vcpu is running(non-root mode), send posted interrupt
+ * notification to vcpu and hardware will sync PIR to vIRR atomically.
+ * 2. If target vcpu isn't running(root mode), kick it to pick up the
+ * interrupt from PIR in next vmentry.
+ */
+static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int r;
+
+	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+	if (!r)
+		return;
+
+	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+		return;
+
+	/* If a previous notification has sent the IPI, nothing to do.  */
+	if (pi_test_and_set_on(&vmx->pi_desc))
+		return;
+
+	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
+		kvm_vcpu_kick(vcpu);
+}
+
+/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+{
+	u32 low32, high32;
+	unsigned long tmpl;
+	unsigned long cr0, cr3, cr4;
+
+	cr0 = read_cr0();
+	WARN_ON(cr0 & X86_CR0_TS);
+	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
+
+	/*
+	 * Save the most likely value for this task's CR3 in the VMCS.
+	 * We can't use __get_current_cr3_fast() because we're not atomic.
+	 */
+	cr3 = __read_cr3();
+	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
+	vmx->loaded_vmcs->host_state.cr3 = cr3;
+
+	/* Save the most likely value for this task's CR4 in the VMCS. */
+	cr4 = cr4_read_shadow();
+	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
+	vmx->loaded_vmcs->host_state.cr4 = cr4;
+
+	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
+#ifdef CONFIG_X86_64
+	/*
+	 * Load null selectors, so we can avoid reloading them in
+	 * vmx_prepare_switch_to_host(), in case userspace uses
+	 * the null selectors too (the expected case).
+	 */
+	vmcs_write16(HOST_DS_SELECTOR, 0);
+	vmcs_write16(HOST_ES_SELECTOR, 0);
+#else
+	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+#endif
+	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
+
+	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
+
+	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
+
+	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
+
+	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+		rdmsr(MSR_IA32_CR_PAT, low32, high32);
+		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+	}
+
+	if (cpu_has_load_ia32_efer())
+		vmcs_write64(HOST_IA32_EFER, host_efer);
+}
+
+void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+	if (enable_ept)
+		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+	if (is_guest_mode(&vmx->vcpu))
+		vmx->vcpu.arch.cr4_guest_owned_bits &=
+			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+}
+
+u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+{
+	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+
+	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
+		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+
+	if (!enable_vnmi)
+		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
+
+	if (!enable_preemption_timer)
+		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+
+	return pin_based_exec_ctrl;
+}
+
+static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
+	if (cpu_has_secondary_exec_ctrls()) {
+		if (kvm_vcpu_apicv_active(vcpu))
+			secondary_exec_controls_setbit(vmx,
+				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+		else
+			secondary_exec_controls_clearbit(vmx,
+					SECONDARY_EXEC_APIC_REGISTER_VIRT |
+					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+	}
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(vcpu);
+}
+
+u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+
+	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+
+	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
+		exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+		exec_control |= CPU_BASED_CR8_STORE_EXITING |
+				CPU_BASED_CR8_LOAD_EXITING;
+#endif
+	}
+	if (!enable_ept)
+		exec_control |= CPU_BASED_CR3_STORE_EXITING |
+				CPU_BASED_CR3_LOAD_EXITING  |
+				CPU_BASED_INVLPG_EXITING;
+	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
+		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
+				CPU_BASED_MONITOR_EXITING);
+	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
+		exec_control &= ~CPU_BASED_HLT_EXITING;
+	return exec_control;
+}
+
+
+static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+	struct kvm_vcpu *vcpu = &vmx->vcpu;
+
+	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+
+	if (pt_mode == PT_MODE_SYSTEM)
+		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
+	if (!cpu_need_virtualize_apic_accesses(vcpu))
+		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+	if (vmx->vpid == 0)
+		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+	if (!enable_ept) {
+		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+		enable_unrestricted_guest = 0;
+	}
+	if (!enable_unrestricted_guest)
+		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+	if (kvm_pause_in_guest(vmx->vcpu.kvm))
+		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+	if (!kvm_vcpu_apicv_active(vcpu))
+		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+
+	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
+	 * in vmx_set_cr4.  */
+	exec_control &= ~SECONDARY_EXEC_DESC;
+
+	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+	   (handle_vmptrld).
+	   We can NOT enable shadow_vmcs here because we don't have yet
+	   a current VMCS12
+	*/
+	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+	if (!enable_pml)
+		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+
+	if (vmx_xsaves_supported()) {
+		/* Exposing XSAVES only when XSAVE is exposed */
+		bool xsaves_enabled =
+			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
+
+		vcpu->arch.xsaves_enabled = xsaves_enabled;
+
+		if (!xsaves_enabled)
+			exec_control &= ~SECONDARY_EXEC_XSAVES;
+
+		if (nested) {
+			if (xsaves_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_XSAVES;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_XSAVES;
+		}
+	}
+
+	if (vmx_rdtscp_supported()) {
+		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
+		if (!rdtscp_enabled)
+			exec_control &= ~SECONDARY_EXEC_RDTSCP;
+
+		if (nested) {
+			if (rdtscp_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_RDTSCP;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_RDTSCP;
+		}
+	}
+
+	if (vmx_invpcid_supported()) {
+		/* Exposing INVPCID only when PCID is exposed */
+		bool invpcid_enabled =
+			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
+			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
+
+		if (!invpcid_enabled) {
+			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
+		}
+
+		if (nested) {
+			if (invpcid_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_ENABLE_INVPCID;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_ENABLE_INVPCID;
+		}
+	}
+
+	if (vmx_rdrand_supported()) {
+		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
+		if (rdrand_enabled)
+			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
+
+		if (nested) {
+			if (rdrand_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_RDRAND_EXITING;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_RDRAND_EXITING;
+		}
+	}
+
+	if (vmx_rdseed_supported()) {
+		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
+		if (rdseed_enabled)
+			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
+
+		if (nested) {
+			if (rdseed_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_RDSEED_EXITING;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_RDSEED_EXITING;
+		}
+	}
+
+	if (vmx_waitpkg_supported()) {
+		bool waitpkg_enabled =
+			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
+
+		if (!waitpkg_enabled)
+			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
+
+		if (nested) {
+			if (waitpkg_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
+		}
+	}
+
+	vmx->secondary_exec_control = exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+	/*
+	 * EPT Misconfigurations can be generated if the value of bits 2:0
+	 * of an EPT paging-structure entry is 110b (write/execute).
+	 */
+	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
+				   VMX_EPT_MISCONFIG_WX_VALUE, 0);
+}
+
+#define VMX_XSS_EXIT_BITMAP 0
+
+/*
+ * Noting that the initialization of Guest-state Area of VMCS is in
+ * vmx_vcpu_reset().
+ */
+static void init_vmcs(struct vcpu_vmx *vmx)
+{
+	if (nested)
+		nested_vmx_set_vmcs_shadowing_bitmap();
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
+
+	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+
+	/* Control */
+	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
+
+	exec_controls_set(vmx, vmx_exec_control(vmx));
+
+	if (cpu_has_secondary_exec_ctrls()) {
+		vmx_compute_secondary_exec_control(vmx);
+		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
+	}
+
+	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
+		vmcs_write64(EOI_EXIT_BITMAP0, 0);
+		vmcs_write64(EOI_EXIT_BITMAP1, 0);
+		vmcs_write64(EOI_EXIT_BITMAP2, 0);
+		vmcs_write64(EOI_EXIT_BITMAP3, 0);
+
+		vmcs_write16(GUEST_INTR_STATUS, 0);
+
+		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+	}
+
+	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
+		vmcs_write32(PLE_GAP, ple_gap);
+		vmx->ple_window = ple_window;
+		vmx->ple_window_dirty = true;
+	}
+
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
+
+	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
+	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
+	vmx_set_constant_host_state(vmx);
+	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+
+	if (cpu_has_vmx_vmfunc())
+		vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
+
+	/* 22.2.1, 20.8.1 */
+	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
+
+	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
+	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
+
+	set_cr4_guest_host_mask(vmx);
+
+	if (vmx->vpid != 0)
+		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+
+	if (vmx_xsaves_supported())
+		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+
+	if (enable_pml) {
+		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+	}
+
+	if (cpu_has_vmx_encls_vmexit())
+		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+	if (pt_mode == PT_MODE_HOST_GUEST) {
+		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
+		/* Bit[6~0] are forced to 1, writes are ignored. */
+		vmx->pt_desc.guest.output_mask = 0x7F;
+		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
+	}
+}
+
+static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct msr_data apic_base_msr;
+	u64 cr0;
+
+	vmx->rmode.vm86_active = 0;
+	vmx->spec_ctrl = 0;
+
+	vmx->msr_ia32_umwait_control = 0;
+
+	vcpu->arch.microcode_version = 0x100000000ULL;
+	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+	vmx->hv_deadline_tsc = -1;
+	kvm_set_cr8(vcpu, 0);
+
+	if (!init_event) {
+		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
+				     MSR_IA32_APICBASE_ENABLE;
+		if (kvm_vcpu_is_reset_bsp(vcpu))
+			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+		apic_base_msr.host_initiated = true;
+		kvm_set_apic_base(vcpu, &apic_base_msr);
+	}
+
+	vmx_segment_cache_clear(vmx);
+
+	seg_setup(VCPU_SREG_CS);
+	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
+
+	seg_setup(VCPU_SREG_DS);
+	seg_setup(VCPU_SREG_ES);
+	seg_setup(VCPU_SREG_FS);
+	seg_setup(VCPU_SREG_GS);
+	seg_setup(VCPU_SREG_SS);
+
+	vmcs_write16(GUEST_TR_SELECTOR, 0);
+	vmcs_writel(GUEST_TR_BASE, 0);
+	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+	vmcs_writel(GUEST_LDTR_BASE, 0);
+	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+
+	if (!init_event) {
+		vmcs_write32(GUEST_SYSENTER_CS, 0);
+		vmcs_writel(GUEST_SYSENTER_ESP, 0);
+		vmcs_writel(GUEST_SYSENTER_EIP, 0);
+		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+	}
+
+	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
+	kvm_rip_write(vcpu, 0xfff0);
+
+	vmcs_writel(GUEST_GDTR_BASE, 0);
+	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+
+	vmcs_writel(GUEST_IDTR_BASE, 0);
+	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+
+	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+	if (kvm_mpx_supported())
+		vmcs_write64(GUEST_BNDCFGS, 0);
+
+	setup_msrs(vmx);
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
+
+	if (cpu_has_vmx_tpr_shadow() && !init_event) {
+		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+		if (cpu_need_tpr_shadow(vcpu))
+			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+				     __pa(vcpu->arch.apic->regs));
+		vmcs_write32(TPR_THRESHOLD, 0);
+	}
+
+	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+	vmx->vcpu.arch.cr0 = cr0;
+	vmx_set_cr0(vcpu, cr0); /* enter rmode */
+	vmx_set_cr4(vcpu, 0);
+	vmx_set_efer(vcpu, 0);
+
+	update_exception_bitmap(vcpu);
+
+	vpid_sync_context(vmx->vpid);
+	if (init_event)
+		vmx_clear_hlt(vcpu);
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+	if (!enable_vnmi ||
+	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+		enable_irq_window(vcpu);
+		return;
+	}
+
+	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
+}
+
+static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	uint32_t intr;
+	int irq = vcpu->arch.interrupt.nr;
+
+	trace_kvm_inj_virq(irq);
+
+	++vcpu->stat.irq_injections;
+	if (vmx->rmode.vm86_active) {
+		int inc_eip = 0;
+		if (vcpu->arch.interrupt.soft)
+			inc_eip = vcpu->arch.event_exit_inst_len;
+		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
+		return;
+	}
+	intr = irq | INTR_INFO_VALID_MASK;
+	if (vcpu->arch.interrupt.soft) {
+		intr |= INTR_TYPE_SOFT_INTR;
+		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+			     vmx->vcpu.arch.event_exit_inst_len);
+	} else
+		intr |= INTR_TYPE_EXT_INTR;
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+
+	vmx_clear_hlt(vcpu);
+}
+
+static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!enable_vnmi) {
+		/*
+		 * Tracking the NMI-blocked state in software is built upon
+		 * finding the next open IRQ window. This, in turn, depends on
+		 * well-behaving guests: They have to keep IRQs disabled at
+		 * least as long as the NMI handler runs. Otherwise we may
+		 * cause NMI nesting, maybe breaking the guest. But as this is
+		 * highly unlikely, we can live with the residual risk.
+		 */
+		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
+		vmx->loaded_vmcs->vnmi_blocked_time = 0;
+	}
+
+	++vcpu->stat.nmi_injections;
+	vmx->loaded_vmcs->nmi_known_unmasked = false;
+
+	if (vmx->rmode.vm86_active) {
+		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
+		return;
+	}
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+
+	vmx_clear_hlt(vcpu);
+}
+
+bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	bool masked;
+
+	if (!enable_vnmi)
+		return vmx->loaded_vmcs->soft_vnmi_blocked;
+	if (vmx->loaded_vmcs->nmi_known_unmasked)
+		return false;
+	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+	return masked;
+}
+
+void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!enable_vnmi) {
+		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
+			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
+			vmx->loaded_vmcs->vnmi_blocked_time = 0;
+		}
+	} else {
+		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+		if (masked)
+			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+				      GUEST_INTR_STATE_NMI);
+		else
+			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+					GUEST_INTR_STATE_NMI);
+	}
+}
+
+static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
+{
+	if (to_vmx(vcpu)->nested.nested_run_pending)
+		return 0;
+
+	if (!enable_vnmi &&
+	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
+		return 0;
+
+	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
+		   | GUEST_INTR_STATE_NMI));
+}
+
+static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+	return (!to_vmx(vcpu)->nested.nested_run_pending &&
+		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
+		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+}
+
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+	int ret;
+
+	if (enable_unrestricted_guest)
+		return 0;
+
+	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
+				    PAGE_SIZE * 3);
+	if (ret)
+		return ret;
+	to_kvm_vmx(kvm)->tss_addr = addr;
+	return init_rmode_tss(kvm);
+}
+
+static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
+{
+	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
+	return 0;
+}
+
+static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+{
+	switch (vec) {
+	case BP_VECTOR:
+		/*
+		 * Update instruction length as we may reinject the exception
+		 * from user space while in guest debugging mode.
+		 */
+		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+			return false;
+		/* fall through */
+	case DB_VECTOR:
+		if (vcpu->guest_debug &
+			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+			return false;
+		/* fall through */
+	case DE_VECTOR:
+	case OF_VECTOR:
+	case BR_VECTOR:
+	case UD_VECTOR:
+	case DF_VECTOR:
+	case SS_VECTOR:
+	case GP_VECTOR:
+	case MF_VECTOR:
+		return true;
+	break;
+	}
+	return false;
+}
+
+static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+				  int vec, u32 err_code)
+{
+	/*
+	 * Instruction with address size override prefix opcode 0x67
+	 * Cause the #SS fault with 0 error code in VM86 mode.
+	 */
+	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+		if (kvm_emulate_instruction(vcpu, 0)) {
+			if (vcpu->arch.halt_request) {
+				vcpu->arch.halt_request = 0;
+				return kvm_vcpu_halt(vcpu);
+			}
+			return 1;
+		}
+		return 0;
+	}
+
+	/*
+	 * Forward all other exceptions that are valid in real mode.
+	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+	 *        the required debugging infrastructure rework.
+	 */
+	kvm_queue_exception(vcpu, vec);
+	return 1;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
+	struct pt_regs regs = {
+		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
+		.flags = X86_EFLAGS_IF,
+	};
+
+	do_machine_check(&regs, 0);
+#endif
+}
+
+static int handle_machine_check(struct kvm_vcpu *vcpu)
+{
+	/* handled by vmx_vcpu_run() */
+	return 1;
+}
+
+static int handle_exception_nmi(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_run *kvm_run = vcpu->run;
+	u32 intr_info, ex_no, error_code;
+	unsigned long cr2, rip, dr6;
+	u32 vect_info;
+
+	vect_info = vmx->idt_vectoring_info;
+	intr_info = vmx->exit_intr_info;
+
+	if (is_machine_check(intr_info) || is_nmi(intr_info))
+		return 1; /* handled by handle_exception_nmi_irqoff() */
+
+	if (is_invalid_opcode(intr_info))
+		return handle_ud(vcpu);
+
+	error_code = 0;
+	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+
+	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
+		WARN_ON_ONCE(!enable_vmware_backdoor);
+
+		/*
+		 * VMware backdoor emulation on #GP interception only handles
+		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
+		 * error code on #GP.
+		 */
+		if (error_code) {
+			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
+			return 1;
+		}
+		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
+	}
+
+	/*
+	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+	 * MMIO, it is better to report an internal error.
+	 * See the comments in vmx_handle_exit.
+	 */
+	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+		vcpu->run->internal.ndata = 3;
+		vcpu->run->internal.data[0] = vect_info;
+		vcpu->run->internal.data[1] = intr_info;
+		vcpu->run->internal.data[2] = error_code;
+		return 0;
+	}
+
+	if (is_page_fault(intr_info)) {
+		cr2 = vmcs_readl(EXIT_QUALIFICATION);
+		/* EPT won't cause page fault directly */
+		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
+		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
+	}
+
+	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+
+	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+		return handle_rmode_exception(vcpu, ex_no, error_code);
+
+	switch (ex_no) {
+	case AC_VECTOR:
+		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
+		return 1;
+	case DB_VECTOR:
+		dr6 = vmcs_readl(EXIT_QUALIFICATION);
+		if (!(vcpu->guest_debug &
+		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
+			vcpu->arch.dr6 |= dr6 | DR6_RTM;
+			if (is_icebp(intr_info))
+				WARN_ON(!skip_emulated_instruction(vcpu));
+
+			kvm_queue_exception(vcpu, DB_VECTOR);
+			return 1;
+		}
+		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+		/* fall through */
+	case BP_VECTOR:
+		/*
+		 * Update instruction length as we may reinject #BP from
+		 * user space while in guest debugging mode. Reading it for
+		 * #DB as well causes no harm, it is not used in that case.
+		 */
+		vmx->vcpu.arch.event_exit_inst_len =
+			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+		kvm_run->exit_reason = KVM_EXIT_DEBUG;
+		rip = kvm_rip_read(vcpu);
+		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+		kvm_run->debug.arch.exception = ex_no;
+		break;
+	default:
+		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+		kvm_run->ex.exception = ex_no;
+		kvm_run->ex.error_code = error_code;
+		break;
+	}
+	return 0;
+}
+
+static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
+{
+	++vcpu->stat.irq_exits;
+	return 1;
+}
+
+static int handle_triple_fault(struct kvm_vcpu *vcpu)
+{
+	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+	vcpu->mmio_needed = 0;
+	return 0;
+}
+
+static int handle_io(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+	int size, in, string;
+	unsigned port;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	string = (exit_qualification & 16) != 0;
+
+	++vcpu->stat.io_exits;
+
+	if (string)
+		return kvm_emulate_instruction(vcpu, 0);
+
+	port = exit_qualification >> 16;
+	size = (exit_qualification & 7) + 1;
+	in = (exit_qualification & 8) != 0;
+
+	return kvm_fast_pio(vcpu, size, port, in);
+}
+
+static void
+vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+	/*
+	 * Patch in the VMCALL instruction:
+	 */
+	hypercall[0] = 0x0f;
+	hypercall[1] = 0x01;
+	hypercall[2] = 0xc1;
+}
+
+/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	if (is_guest_mode(vcpu)) {
+		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+		unsigned long orig_val = val;
+
+		/*
+		 * We get here when L2 changed cr0 in a way that did not change
+		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+		 * but did change L0 shadowed bits. So we first calculate the
+		 * effective cr0 value that L1 would like to write into the
+		 * hardware. It consists of the L2-owned bits from the new
+		 * value combined with the L1-owned bits from L1's guest_cr0.
+		 */
+		val = (val & ~vmcs12->cr0_guest_host_mask) |
+			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+
+		if (!nested_guest_cr0_valid(vcpu, val))
+			return 1;
+
+		if (kvm_set_cr0(vcpu, val))
+			return 1;
+		vmcs_writel(CR0_READ_SHADOW, orig_val);
+		return 0;
+	} else {
+		if (to_vmx(vcpu)->nested.vmxon &&
+		    !nested_host_cr0_valid(vcpu, val))
+			return 1;
+
+		return kvm_set_cr0(vcpu, val);
+	}
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	if (is_guest_mode(vcpu)) {
+		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+		unsigned long orig_val = val;
+
+		/* analogously to handle_set_cr0 */
+		val = (val & ~vmcs12->cr4_guest_host_mask) |
+			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+		if (kvm_set_cr4(vcpu, val))
+			return 1;
+		vmcs_writel(CR4_READ_SHADOW, orig_val);
+		return 0;
+	} else
+		return kvm_set_cr4(vcpu, val);
+}
+
+static int handle_desc(struct kvm_vcpu *vcpu)
+{
+	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
+	return kvm_emulate_instruction(vcpu, 0);
+}
+
+static int handle_cr(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification, val;
+	int cr;
+	int reg;
+	int err;
+	int ret;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	cr = exit_qualification & 15;
+	reg = (exit_qualification >> 8) & 15;
+	switch ((exit_qualification >> 4) & 3) {
+	case 0: /* mov to cr */
+		val = kvm_register_readl(vcpu, reg);
+		trace_kvm_cr_write(cr, val);
+		switch (cr) {
+		case 0:
+			err = handle_set_cr0(vcpu, val);
+			return kvm_complete_insn_gp(vcpu, err);
+		case 3:
+			WARN_ON_ONCE(enable_unrestricted_guest);
+			err = kvm_set_cr3(vcpu, val);
+			return kvm_complete_insn_gp(vcpu, err);
+		case 4:
+			err = handle_set_cr4(vcpu, val);
+			return kvm_complete_insn_gp(vcpu, err);
+		case 8: {
+				u8 cr8_prev = kvm_get_cr8(vcpu);
+				u8 cr8 = (u8)val;
+				err = kvm_set_cr8(vcpu, cr8);
+				ret = kvm_complete_insn_gp(vcpu, err);
+				if (lapic_in_kernel(vcpu))
+					return ret;
+				if (cr8_prev <= cr8)
+					return ret;
+				/*
+				 * TODO: we might be squashing a
+				 * KVM_GUESTDBG_SINGLESTEP-triggered
+				 * KVM_EXIT_DEBUG here.
+				 */
+				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+				return 0;
+			}
+		}
+		break;
+	case 2: /* clts */
+		WARN_ONCE(1, "Guest should always own CR0.TS");
+		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+		return kvm_skip_emulated_instruction(vcpu);
+	case 1: /*mov from cr*/
+		switch (cr) {
+		case 3:
+			WARN_ON_ONCE(enable_unrestricted_guest);
+			val = kvm_read_cr3(vcpu);
+			kvm_register_write(vcpu, reg, val);
+			trace_kvm_cr_read(cr, val);
+			return kvm_skip_emulated_instruction(vcpu);
+		case 8:
+			val = kvm_get_cr8(vcpu);
+			kvm_register_write(vcpu, reg, val);
+			trace_kvm_cr_read(cr, val);
+			return kvm_skip_emulated_instruction(vcpu);
+		}
+		break;
+	case 3: /* lmsw */
+		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+		kvm_lmsw(vcpu, val);
+
+		return kvm_skip_emulated_instruction(vcpu);
+	default:
+		break;
+	}
+	vcpu->run->exit_reason = 0;
+	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+	       (int)(exit_qualification >> 4) & 3, cr);
+	return 0;
+}
+
+static int handle_dr(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+	int dr, dr7, reg;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+
+	/* First, if DR does not exist, trigger UD */
+	if (!kvm_require_dr(vcpu, dr))
+		return 1;
+
+	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
+	if (!kvm_require_cpl(vcpu, 0))
+		return 1;
+	dr7 = vmcs_readl(GUEST_DR7);
+	if (dr7 & DR7_GD) {
+		/*
+		 * As the vm-exit takes precedence over the debug trap, we
+		 * need to emulate the latter, either for the host or the
+		 * guest debugging itself.
+		 */
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
+			vcpu->run->debug.arch.dr7 = dr7;
+			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+			vcpu->run->debug.arch.exception = DB_VECTOR;
+			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+			return 0;
+		} else {
+			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
+			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
+			kvm_queue_exception(vcpu, DB_VECTOR);
+			return 1;
+		}
+	}
+
+	if (vcpu->guest_debug == 0) {
+		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
+
+		/*
+		 * No more DR vmexits; force a reload of the debug registers
+		 * and reenter on this instruction.  The next vmexit will
+		 * retrieve the full state of the debug registers.
+		 */
+		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+		return 1;
+	}
+
+	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+	if (exit_qualification & TYPE_MOV_FROM_DR) {
+		unsigned long val;
+
+		if (kvm_get_dr(vcpu, dr, &val))
+			return 1;
+		kvm_register_write(vcpu, reg, val);
+	} else
+		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+			return 1;
+
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
+{
+	return vcpu->arch.dr6;
+}
+
+static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
+{
+}
+
+static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+	get_debugreg(vcpu->arch.db[0], 0);
+	get_debugreg(vcpu->arch.db[1], 1);
+	get_debugreg(vcpu->arch.db[2], 2);
+	get_debugreg(vcpu->arch.db[3], 3);
+	get_debugreg(vcpu->arch.dr6, 6);
+	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+
+	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
+}
+
+static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	vmcs_writel(GUEST_DR7, val);
+}
+
+static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+{
+	kvm_apic_update_ppr(vcpu);
+	return 1;
+}
+
+static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+{
+	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
+
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	++vcpu->stat.irq_window_exits;
+	return 1;
+}
+
+static int handle_vmcall(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_hypercall(vcpu);
+}
+
+static int handle_invd(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_instruction(vcpu, 0);
+}
+
+static int handle_invlpg(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	kvm_mmu_invlpg(vcpu, exit_qualification);
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_rdpmc(struct kvm_vcpu *vcpu)
+{
+	int err;
+
+	err = kvm_rdpmc(vcpu);
+	return kvm_complete_insn_gp(vcpu, err);
+}
+
+static int handle_wbinvd(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_wbinvd(vcpu);
+}
+
+static int handle_xsetbv(struct kvm_vcpu *vcpu)
+{
+	u64 new_bv = kvm_read_edx_eax(vcpu);
+	u32 index = kvm_rcx_read(vcpu);
+
+	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+		return kvm_skip_emulated_instruction(vcpu);
+	return 1;
+}
+
+static int handle_apic_access(struct kvm_vcpu *vcpu)
+{
+	if (likely(fasteoi)) {
+		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+		int access_type, offset;
+
+		access_type = exit_qualification & APIC_ACCESS_TYPE;
+		offset = exit_qualification & APIC_ACCESS_OFFSET;
+		/*
+		 * Sane guest uses MOV to write EOI, with written value
+		 * not cared. So make a short-circuit here by avoiding
+		 * heavy instruction emulation.
+		 */
+		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+		    (offset == APIC_EOI)) {
+			kvm_lapic_set_eoi(vcpu);
+			return kvm_skip_emulated_instruction(vcpu);
+		}
+	}
+	return kvm_emulate_instruction(vcpu, 0);
+}
+
+static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	int vector = exit_qualification & 0xff;
+
+	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+	kvm_apic_set_eoi_accelerated(vcpu, vector);
+	return 1;
+}
+
+static int handle_apic_write(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	u32 offset = exit_qualification & 0xfff;
+
+	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
+	kvm_apic_write_nodecode(vcpu, offset);
+	return 1;
+}
+
+static int handle_task_switch(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long exit_qualification;
+	bool has_error_code = false;
+	u32 error_code = 0;
+	u16 tss_selector;
+	int reason, type, idt_v, idt_index;
+
+	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	reason = (u32)exit_qualification >> 30;
+	if (reason == TASK_SWITCH_GATE && idt_v) {
+		switch (type) {
+		case INTR_TYPE_NMI_INTR:
+			vcpu->arch.nmi_injected = false;
+			vmx_set_nmi_mask(vcpu, true);
+			break;
+		case INTR_TYPE_EXT_INTR:
+		case INTR_TYPE_SOFT_INTR:
+			kvm_clear_interrupt_queue(vcpu);
+			break;
+		case INTR_TYPE_HARD_EXCEPTION:
+			if (vmx->idt_vectoring_info &
+			    VECTORING_INFO_DELIVER_CODE_MASK) {
+				has_error_code = true;
+				error_code =
+					vmcs_read32(IDT_VECTORING_ERROR_CODE);
+			}
+			/* fall through */
+		case INTR_TYPE_SOFT_EXCEPTION:
+			kvm_clear_exception_queue(vcpu);
+			break;
+		default:
+			break;
+		}
+	}
+	tss_selector = exit_qualification;
+
+	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+		       type != INTR_TYPE_EXT_INTR &&
+		       type != INTR_TYPE_NMI_INTR))
+		WARN_ON(!skip_emulated_instruction(vcpu));
+
+	/*
+	 * TODO: What about debug traps on tss switch?
+	 *       Are we supposed to inject them and update dr6?
+	 */
+	return kvm_task_switch(vcpu, tss_selector,
+			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
+			       reason, has_error_code, error_code);
+}
+
+static int handle_ept_violation(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+	gpa_t gpa;
+	u64 error_code;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	/*
+	 * EPT violation happened while executing iret from NMI,
+	 * "blocked by NMI" bit has to be set before next VM entry.
+	 * There are errata that may cause this bit to not be set:
+	 * AAK134, BY25.
+	 */
+	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+			enable_vnmi &&
+			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
+		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+
+	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+	trace_kvm_page_fault(gpa, exit_qualification);
+
+	/* Is it a read fault? */
+	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
+		     ? PFERR_USER_MASK : 0;
+	/* Is it a write fault? */
+	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
+		      ? PFERR_WRITE_MASK : 0;
+	/* Is it a fetch fault? */
+	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
+		      ? PFERR_FETCH_MASK : 0;
+	/* ept page table entry is present? */
+	error_code |= (exit_qualification &
+		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
+			EPT_VIOLATION_EXECUTABLE))
+		      ? PFERR_PRESENT_MASK : 0;
+
+	error_code |= (exit_qualification & 0x100) != 0 ?
+	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
+
+	vcpu->arch.exit_qualification = exit_qualification;
+	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+}
+
+static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+{
+	gpa_t gpa;
+
+	/*
+	 * A nested guest cannot optimize MMIO vmexits, because we have an
+	 * nGPA here instead of the required GPA.
+	 */
+	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+	if (!is_guest_mode(vcpu) &&
+	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+		trace_kvm_fast_mmio(gpa);
+		return kvm_skip_emulated_instruction(vcpu);
+	}
+
+	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
+}
+
+static int handle_nmi_window(struct kvm_vcpu *vcpu)
+{
+	WARN_ON_ONCE(!enable_vnmi);
+	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
+	++vcpu->stat.nmi_window_exits;
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	return 1;
+}
+
+static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	bool intr_window_requested;
+	unsigned count = 130;
+
+	/*
+	 * We should never reach the point where we are emulating L2
+	 * due to invalid guest state as that means we incorrectly
+	 * allowed a nested VMEntry with an invalid vmcs12.
+	 */
+	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
+
+	intr_window_requested = exec_controls_get(vmx) &
+				CPU_BASED_INTR_WINDOW_EXITING;
+
+	while (vmx->emulation_required && count-- != 0) {
+		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
+			return handle_interrupt_window(&vmx->vcpu);
+
+		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
+			return 1;
+
+		if (!kvm_emulate_instruction(vcpu, 0))
+			return 0;
+
+		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
+		    vcpu->arch.exception.pending) {
+			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+			vcpu->run->internal.suberror =
+						KVM_INTERNAL_ERROR_EMULATION;
+			vcpu->run->internal.ndata = 0;
+			return 0;
+		}
+
+		if (vcpu->arch.halt_request) {
+			vcpu->arch.halt_request = 0;
+			return kvm_vcpu_halt(vcpu);
+		}
+
+		/*
+		 * Note, return 1 and not 0, vcpu_run() is responsible for
+		 * morphing the pending signal into the proper return code.
+		 */
+		if (signal_pending(current))
+			return 1;
+
+		if (need_resched())
+			schedule();
+	}
+
+	return 1;
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned int old = vmx->ple_window;
+
+	vmx->ple_window = __grow_ple_window(old, ple_window,
+					    ple_window_grow,
+					    ple_window_max);
+
+	if (vmx->ple_window != old) {
+		vmx->ple_window_dirty = true;
+		trace_kvm_ple_window_update(vcpu->vcpu_id,
+					    vmx->ple_window, old);
+	}
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned int old = vmx->ple_window;
+
+	vmx->ple_window = __shrink_ple_window(old, ple_window,
+					      ple_window_shrink,
+					      ple_window);
+
+	if (vmx->ple_window != old) {
+		vmx->ple_window_dirty = true;
+		trace_kvm_ple_window_update(vcpu->vcpu_id,
+					    vmx->ple_window, old);
+	}
+}
+
+/*
+ * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
+ */
+static void wakeup_handler(void)
+{
+	struct kvm_vcpu *vcpu;
+	int cpu = smp_processor_id();
+
+	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
+			blocked_vcpu_list) {
+		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+		if (pi_test_on(pi_desc) == 1)
+			kvm_vcpu_kick(vcpu);
+	}
+	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+}
+
+static void vmx_enable_tdp(void)
+{
+	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
+		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
+		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
+		0ull, VMX_EPT_EXECUTABLE_MASK,
+		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
+		VMX_EPT_RWX_MASK, 0ull);
+
+	ept_set_mmio_spte_mask();
+	kvm_enable_tdp();
+}
+
+/*
+ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+ */
+static int handle_pause(struct kvm_vcpu *vcpu)
+{
+	if (!kvm_pause_in_guest(vcpu->kvm))
+		grow_ple_window(vcpu);
+
+	/*
+	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
+	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
+	 * never set PAUSE_EXITING and just set PLE if supported,
+	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
+	 */
+	kvm_vcpu_on_spin(vcpu, true);
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_nop(struct kvm_vcpu *vcpu)
+{
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+	return handle_nop(vcpu);
+}
+
+static int handle_invalid_op(struct kvm_vcpu *vcpu)
+{
+	kvm_queue_exception(vcpu, UD_VECTOR);
+	return 1;
+}
+
+static int handle_monitor_trap(struct kvm_vcpu *vcpu)
+{
+	return 1;
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+	return handle_nop(vcpu);
+}
+
+static int handle_invpcid(struct kvm_vcpu *vcpu)
+{
+	u32 vmx_instruction_info;
+	unsigned long type;
+	bool pcid_enabled;
+	gva_t gva;
+	struct x86_exception e;
+	unsigned i;
+	unsigned long roots_to_free = 0;
+	struct {
+		u64 pcid;
+		u64 gla;
+	} operand;
+
+	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+	if (type > 3) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	/* According to the Intel instruction reference, the memory operand
+	 * is read even if it isn't needed (e.g., for type==all)
+	 */
+	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+				vmx_instruction_info, false,
+				sizeof(operand), &gva))
+		return 1;
+
+	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+		kvm_inject_page_fault(vcpu, &e);
+		return 1;
+	}
+
+	if (operand.pcid >> 12 != 0) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
+
+	switch (type) {
+	case INVPCID_TYPE_INDIV_ADDR:
+		if ((!pcid_enabled && (operand.pcid != 0)) ||
+		    is_noncanonical_address(operand.gla, vcpu)) {
+			kvm_inject_gp(vcpu, 0);
+			return 1;
+		}
+		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
+		return kvm_skip_emulated_instruction(vcpu);
+
+	case INVPCID_TYPE_SINGLE_CTXT:
+		if (!pcid_enabled && (operand.pcid != 0)) {
+			kvm_inject_gp(vcpu, 0);
+			return 1;
+		}
+
+		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
+			kvm_mmu_sync_roots(vcpu);
+			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+		}
+
+		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
+			    == operand.pcid)
+				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+
+		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
+		/*
+		 * If neither the current cr3 nor any of the prev_roots use the
+		 * given PCID, then nothing needs to be done here because a
+		 * resync will happen anyway before switching to any other CR3.
+		 */
+
+		return kvm_skip_emulated_instruction(vcpu);
+
+	case INVPCID_TYPE_ALL_NON_GLOBAL:
+		/*
+		 * Currently, KVM doesn't mark global entries in the shadow
+		 * page tables, so a non-global flush just degenerates to a
+		 * global flush. If needed, we could optimize this later by
+		 * keeping track of global entries in shadow page tables.
+		 */
+
+		/* fall-through */
+	case INVPCID_TYPE_ALL_INCL_GLOBAL:
+		kvm_mmu_unload(vcpu);
+		return kvm_skip_emulated_instruction(vcpu);
+
+	default:
+		BUG(); /* We have already checked above that type <= 3 */
+	}
+}
+
+static int handle_pml_full(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+
+	trace_kvm_pml_full(vcpu->vcpu_id);
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	/*
+	 * PML buffer FULL happened while executing iret from NMI,
+	 * "blocked by NMI" bit has to be set before next VM entry.
+	 */
+	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+			enable_vnmi &&
+			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
+		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+				GUEST_INTR_STATE_NMI);
+
+	/*
+	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+	 * here.., and there's no userspace involvement needed for PML.
+	 */
+	return 1;
+}
+
+static int handle_preemption_timer(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx->req_immediate_exit &&
+	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
+		kvm_lapic_expired_hv_timer(vcpu);
+
+	return 1;
+}
+
+/*
+ * When nested=0, all VMX instruction VM Exits filter here.  The handlers
+ * are overwritten by nested_vmx_setup() when nested=1.
+ */
+static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
+{
+	kvm_queue_exception(vcpu, UD_VECTOR);
+	return 1;
+}
+
+static int handle_encls(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * SGX virtualization is not yet supported.  There is no software
+	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
+	 * to prevent the guest from executing ENCLS.
+	 */
+	kvm_queue_exception(vcpu, UD_VECTOR);
+	return 1;
+}
+
+/*
+ * The exit handlers return 1 if the exit was handled fully and guest execution
+ * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
+ * to be done to userspace and return 0.
+ */
+static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
+	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
+	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
+	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
+	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
+	[EXIT_REASON_CR_ACCESS]               = handle_cr,
+	[EXIT_REASON_DR_ACCESS]               = handle_dr,
+	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
+	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
+	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
+	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
+	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
+	[EXIT_REASON_INVD]		      = handle_invd,
+	[EXIT_REASON_INVLPG]		      = handle_invlpg,
+	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
+	[EXIT_REASON_VMCALL]                  = handle_vmcall,
+	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
+	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
+	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
+	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
+	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
+	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
+	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
+	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
+	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
+	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
+	[EXIT_REASON_LDTR_TR]		      = handle_desc,
+	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
+	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
+	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
+	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
+	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
+	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
+	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
+	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
+	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
+	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
+	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
+	[EXIT_REASON_INVPCID]                 = handle_invpcid,
+	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
+	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
+	[EXIT_REASON_ENCLS]		      = handle_encls,
+};
+
+static const int kvm_vmx_max_exit_handlers =
+	ARRAY_SIZE(kvm_vmx_exit_handlers);
+
+static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+{
+	*info1 = vmcs_readl(EXIT_QUALIFICATION);
+	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
+}
+
+static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
+{
+	if (vmx->pml_pg) {
+		__free_page(vmx->pml_pg);
+		vmx->pml_pg = NULL;
+	}
+}
+
+static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u64 *pml_buf;
+	u16 pml_idx;
+
+	pml_idx = vmcs_read16(GUEST_PML_INDEX);
+
+	/* Do nothing if PML buffer is empty */
+	if (pml_idx == (PML_ENTITY_NUM - 1))
+		return;
+
+	/* PML index always points to next available PML buffer entity */
+	if (pml_idx >= PML_ENTITY_NUM)
+		pml_idx = 0;
+	else
+		pml_idx++;
+
+	pml_buf = page_address(vmx->pml_pg);
+	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+		u64 gpa;
+
+		gpa = pml_buf[pml_idx];
+		WARN_ON(gpa & (PAGE_SIZE - 1));
+		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
+	}
+
+	/* reset PML index */
+	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+}
+
+/*
+ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+ * Called before reporting dirty_bitmap to userspace.
+ */
+static void kvm_flush_pml_buffers(struct kvm *kvm)
+{
+	int i;
+	struct kvm_vcpu *vcpu;
+	/*
+	 * We only need to kick vcpu out of guest mode here, as PML buffer
+	 * is flushed at beginning of all VMEXITs, and it's obvious that only
+	 * vcpus running in guest are possible to have unflushed GPAs in PML
+	 * buffer.
+	 */
+	kvm_for_each_vcpu(i, vcpu, kvm)
+		kvm_vcpu_kick(vcpu);
+}
+
+static void vmx_dump_sel(char *name, uint32_t sel)
+{
+	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
+	       name, vmcs_read16(sel),
+	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
+	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
+	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
+}
+
+static void vmx_dump_dtsel(char *name, uint32_t limit)
+{
+	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
+	       name, vmcs_read32(limit),
+	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
+}
+
+void dump_vmcs(void)
+{
+	u32 vmentry_ctl, vmexit_ctl;
+	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
+	unsigned long cr4;
+	u64 efer;
+	int i, n;
+
+	if (!dump_invalid_vmcs) {
+		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
+		return;
+	}
+
+	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
+	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
+	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
+	cr4 = vmcs_readl(GUEST_CR4);
+	efer = vmcs_read64(GUEST_IA32_EFER);
+	secondary_exec_control = 0;
+	if (cpu_has_secondary_exec_ctrls())
+		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+	pr_err("*** Guest State ***\n");
+	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
+	       vmcs_readl(CR0_GUEST_HOST_MASK));
+	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
+	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
+	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
+	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
+	{
+		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
+		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
+		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
+		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
+	}
+	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
+	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
+	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
+	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
+	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+	       vmcs_readl(GUEST_SYSENTER_ESP),
+	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
+	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
+	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
+	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
+	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
+	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
+	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
+	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
+	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
+	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
+	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
+	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
+	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
+		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
+		       efer, vmcs_read64(GUEST_IA32_PAT));
+	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
+	       vmcs_read64(GUEST_IA32_DEBUGCTL),
+	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
+	if (cpu_has_load_perf_global_ctrl() &&
+	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+		pr_err("PerfGlobCtl = 0x%016llx\n",
+		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
+	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
+		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
+	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
+	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
+	       vmcs_read32(GUEST_ACTIVITY_STATE));
+	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+		pr_err("InterruptStatus = %04x\n",
+		       vmcs_read16(GUEST_INTR_STATUS));
+
+	pr_err("*** Host State ***\n");
+	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
+	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
+	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
+	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
+	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
+	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
+	       vmcs_read16(HOST_TR_SELECTOR));
+	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
+	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
+	       vmcs_readl(HOST_TR_BASE));
+	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
+	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
+	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
+	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
+	       vmcs_readl(HOST_CR4));
+	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
+	       vmcs_read32(HOST_IA32_SYSENTER_CS),
+	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
+	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
+		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
+		       vmcs_read64(HOST_IA32_EFER),
+		       vmcs_read64(HOST_IA32_PAT));
+	if (cpu_has_load_perf_global_ctrl() &&
+	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+		pr_err("PerfGlobCtl = 0x%016llx\n",
+		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
+
+	pr_err("*** Control State ***\n");
+	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
+	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
+	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
+	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
+	       vmcs_read32(EXCEPTION_BITMAP),
+	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
+	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
+	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
+	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
+	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
+	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
+	       vmcs_read32(VM_EXIT_INTR_INFO),
+	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
+	pr_err("        reason=%08x qualification=%016lx\n",
+	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
+	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
+	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
+	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
+	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
+	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
+		pr_err("TSC Multiplier = 0x%016llx\n",
+		       vmcs_read64(TSC_MULTIPLIER));
+	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
+		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
+			u16 status = vmcs_read16(GUEST_INTR_STATUS);
+			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
+		}
+		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
+		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
+		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
+	}
+	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
+		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
+	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
+		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
+	n = vmcs_read32(CR3_TARGET_COUNT);
+	for (i = 0; i + 1 < n; i += 4)
+		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
+		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
+		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
+	if (i < n)
+		pr_err("CR3 target%u=%016lx\n",
+		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
+	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+		pr_err("PLE Gap=%08x Window=%08x\n",
+		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
+	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
+		pr_err("Virtual processor ID = 0x%04x\n",
+		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
+}
+
+/*
+ * The guest has exited.  See if we can fix it or if we need userspace
+ * assistance.
+ */
+static int vmx_handle_exit(struct kvm_vcpu *vcpu,
+	enum exit_fastpath_completion exit_fastpath)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 exit_reason = vmx->exit_reason;
+	u32 vectoring_info = vmx->idt_vectoring_info;
+
+	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
+
+	/*
+	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
+	 * mode as if vcpus is in root mode, the PML buffer must has been
+	 * flushed already.
+	 */
+	if (enable_pml)
+		vmx_flush_pml_buffer(vcpu);
+
+	/* If guest state is invalid, start emulating */
+	if (vmx->emulation_required)
+		return handle_invalid_guest_state(vcpu);
+
+	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
+		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
+
+	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
+		dump_vmcs();
+		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+		vcpu->run->fail_entry.hardware_entry_failure_reason
+			= exit_reason;
+		return 0;
+	}
+
+	if (unlikely(vmx->fail)) {
+		dump_vmcs();
+		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+		vcpu->run->fail_entry.hardware_entry_failure_reason
+			= vmcs_read32(VM_INSTRUCTION_ERROR);
+		return 0;
+	}
+
+	/*
+	 * Note:
+	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+	 * delivery event since it indicates guest is accessing MMIO.
+	 * The vm-exit can be triggered again after return to guest that
+	 * will cause infinite loop.
+	 */
+	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
+			exit_reason != EXIT_REASON_EPT_VIOLATION &&
+			exit_reason != EXIT_REASON_PML_FULL &&
+			exit_reason != EXIT_REASON_TASK_SWITCH)) {
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+		vcpu->run->internal.ndata = 3;
+		vcpu->run->internal.data[0] = vectoring_info;
+		vcpu->run->internal.data[1] = exit_reason;
+		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
+		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
+			vcpu->run->internal.ndata++;
+			vcpu->run->internal.data[3] =
+				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+		}
+		return 0;
+	}
+
+	if (unlikely(!enable_vnmi &&
+		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
+		if (vmx_interrupt_allowed(vcpu)) {
+			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
+			   vcpu->arch.nmi_pending) {
+			/*
+			 * This CPU don't support us in finding the end of an
+			 * NMI-blocked window if the guest runs with IRQs
+			 * disabled. So we pull the trigger after 1 s of
+			 * futile waiting, but inform the user about this.
+			 */
+			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+			       "state on VCPU %d after 1 s timeout\n",
+			       __func__, vcpu->vcpu_id);
+			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+		}
+	}
+
+	if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
+		kvm_skip_emulated_instruction(vcpu);
+		return 1;
+	} else if (exit_reason < kvm_vmx_max_exit_handlers
+	    && kvm_vmx_exit_handlers[exit_reason]) {
+#ifdef CONFIG_RETPOLINE
+		if (exit_reason == EXIT_REASON_MSR_WRITE)
+			return kvm_emulate_wrmsr(vcpu);
+		else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
+			return handle_preemption_timer(vcpu);
+		else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
+			return handle_interrupt_window(vcpu);
+		else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
+			return handle_external_interrupt(vcpu);
+		else if (exit_reason == EXIT_REASON_HLT)
+			return kvm_emulate_halt(vcpu);
+		else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
+			return handle_ept_misconfig(vcpu);
+#endif
+		return kvm_vmx_exit_handlers[exit_reason](vcpu);
+	} else {
+		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
+				exit_reason);
+		dump_vmcs();
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror =
+			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
+		vcpu->run->internal.ndata = 1;
+		vcpu->run->internal.data[0] = exit_reason;
+		return 0;
+	}
+}
+
+/*
+ * Software based L1D cache flush which is used when microcode providing
+ * the cache control MSR is not loaded.
+ *
+ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
+ * flush it is required to read in 64 KiB because the replacement algorithm
+ * is not exactly LRU. This could be sized at runtime via topology
+ * information but as all relevant affected CPUs have 32KiB L1D cache size
+ * there is no point in doing so.
+ */
+static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+{
+	int size = PAGE_SIZE << L1D_CACHE_ORDER;
+
+	/*
+	 * This code is only executed when the the flush mode is 'cond' or
+	 * 'always'
+	 */
+	if (static_branch_likely(&vmx_l1d_flush_cond)) {
+		bool flush_l1d;
+
+		/*
+		 * Clear the per-vcpu flush bit, it gets set again
+		 * either from vcpu_run() or from one of the unsafe
+		 * VMEXIT handlers.
+		 */
+		flush_l1d = vcpu->arch.l1tf_flush_l1d;
+		vcpu->arch.l1tf_flush_l1d = false;
+
+		/*
+		 * Clear the per-cpu flush bit, it gets set again from
+		 * the interrupt handlers.
+		 */
+		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
+		kvm_clear_cpu_l1tf_flush_l1d();
+
+		if (!flush_l1d)
+			return;
+	}
+
+	vcpu->stat.l1d_flush++;
+
+	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+		return;
+	}
+
+	asm volatile(
+		/* First ensure the pages are in the TLB */
+		"xorl	%%eax, %%eax\n"
+		".Lpopulate_tlb:\n\t"
+		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+		"addl	$4096, %%eax\n\t"
+		"cmpl	%%eax, %[size]\n\t"
+		"jne	.Lpopulate_tlb\n\t"
+		"xorl	%%eax, %%eax\n\t"
+		"cpuid\n\t"
+		/* Now fill the cache */
+		"xorl	%%eax, %%eax\n"
+		".Lfill_cache:\n"
+		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+		"addl	$64, %%eax\n\t"
+		"cmpl	%%eax, %[size]\n\t"
+		"jne	.Lfill_cache\n\t"
+		"lfence\n"
+		:: [flush_pages] "r" (vmx_l1d_flush_pages),
+		    [size] "r" (size)
+		: "eax", "ebx", "ecx", "edx");
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	int tpr_threshold;
+
+	if (is_guest_mode(vcpu) &&
+		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+		return;
+
+	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
+	if (is_guest_mode(vcpu))
+		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
+	else
+		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
+}
+
+void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 sec_exec_control;
+
+	if (!lapic_in_kernel(vcpu))
+		return;
+
+	if (!flexpriority_enabled &&
+	    !cpu_has_vmx_virtualize_x2apic_mode())
+		return;
+
+	/* Postpone execution until vmcs01 is the current VMCS. */
+	if (is_guest_mode(vcpu)) {
+		vmx->nested.change_vmcs01_virtual_apic_mode = true;
+		return;
+	}
+
+	sec_exec_control = secondary_exec_controls_get(vmx);
+	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+
+	switch (kvm_get_apic_mode(vcpu)) {
+	case LAPIC_MODE_INVALID:
+		WARN_ONCE(true, "Invalid local APIC state");
+	case LAPIC_MODE_DISABLED:
+		break;
+	case LAPIC_MODE_XAPIC:
+		if (flexpriority_enabled) {
+			sec_exec_control |=
+				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+			vmx_flush_tlb(vcpu, true);
+		}
+		break;
+	case LAPIC_MODE_X2APIC:
+		if (cpu_has_vmx_virtualize_x2apic_mode())
+			sec_exec_control |=
+				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+		break;
+	}
+	secondary_exec_controls_set(vmx, sec_exec_control);
+
+	vmx_update_msr_bitmap(vcpu);
+}
+
+static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
+{
+	if (!is_guest_mode(vcpu)) {
+		vmcs_write64(APIC_ACCESS_ADDR, hpa);
+		vmx_flush_tlb(vcpu, true);
+	}
+}
+
+static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+{
+	u16 status;
+	u8 old;
+
+	if (max_isr == -1)
+		max_isr = 0;
+
+	status = vmcs_read16(GUEST_INTR_STATUS);
+	old = status >> 8;
+	if (max_isr != old) {
+		status &= 0xff;
+		status |= max_isr << 8;
+		vmcs_write16(GUEST_INTR_STATUS, status);
+	}
+}
+
+static void vmx_set_rvi(int vector)
+{
+	u16 status;
+	u8 old;
+
+	if (vector == -1)
+		vector = 0;
+
+	status = vmcs_read16(GUEST_INTR_STATUS);
+	old = (u8)status & 0xff;
+	if ((u8)vector != old) {
+		status &= ~0xff;
+		status |= (u8)vector;
+		vmcs_write16(GUEST_INTR_STATUS, status);
+	}
+}
+
+static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+	/*
+	 * When running L2, updating RVI is only relevant when
+	 * vmcs12 virtual-interrupt-delivery enabled.
+	 * However, it can be enabled only when L1 also
+	 * intercepts external-interrupts and in that case
+	 * we should not update vmcs02 RVI but instead intercept
+	 * interrupt. Therefore, do nothing when running L2.
+	 */
+	if (!is_guest_mode(vcpu))
+		vmx_set_rvi(max_irr);
+}
+
+static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int max_irr;
+	bool max_irr_updated;
+
+	WARN_ON(!vcpu->arch.apicv_active);
+	if (pi_test_on(&vmx->pi_desc)) {
+		pi_clear_on(&vmx->pi_desc);
+		/*
+		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
+		 * But on x86 this is just a compiler barrier anyway.
+		 */
+		smp_mb__after_atomic();
+		max_irr_updated =
+			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
+
+		/*
+		 * If we are running L2 and L1 has a new pending interrupt
+		 * which can be injected, we should re-evaluate
+		 * what should be done with this new L1 interrupt.
+		 * If L1 intercepts external-interrupts, we should
+		 * exit from L2 to L1. Otherwise, interrupt should be
+		 * delivered directly to L2.
+		 */
+		if (is_guest_mode(vcpu) && max_irr_updated) {
+			if (nested_exit_on_intr(vcpu))
+				kvm_vcpu_exiting_guest_mode(vcpu);
+			else
+				kvm_make_request(KVM_REQ_EVENT, vcpu);
+		}
+	} else {
+		max_irr = kvm_lapic_find_highest_irr(vcpu);
+	}
+	vmx_hwapic_irr_update(vcpu, max_irr);
+	return max_irr;
+}
+
+static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+	return pi_test_on(pi_desc) ||
+		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
+}
+
+static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+	if (!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+}
+
+static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	pi_clear_on(&vmx->pi_desc);
+	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
+}
+
+static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
+{
+	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+	/* if exit due to PF check for async PF */
+	if (is_page_fault(vmx->exit_intr_info))
+		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
+
+	/* Handle machine checks before interrupts are enabled */
+	if (is_machine_check(vmx->exit_intr_info))
+		kvm_machine_check();
+
+	/* We need to handle NMIs before interrupts are enabled */
+	if (is_nmi(vmx->exit_intr_info)) {
+		kvm_before_interrupt(&vmx->vcpu);
+		asm("int $2");
+		kvm_after_interrupt(&vmx->vcpu);
+	}
+}
+
+static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
+{
+	unsigned int vector;
+	unsigned long entry;
+#ifdef CONFIG_X86_64
+	unsigned long tmp;
+#endif
+	gate_desc *desc;
+	u32 intr_info;
+
+	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+	if (WARN_ONCE(!is_external_intr(intr_info),
+	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
+		return;
+
+	vector = intr_info & INTR_INFO_VECTOR_MASK;
+	desc = (gate_desc *)host_idt_base + vector;
+	entry = gate_offset(desc);
+
+	kvm_before_interrupt(vcpu);
+
+	asm volatile(
+#ifdef CONFIG_X86_64
+		"mov %%" _ASM_SP ", %[sp]\n\t"
+		"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
+		"push $%c[ss]\n\t"
+		"push %[sp]\n\t"
+#endif
+		"pushf\n\t"
+		__ASM_SIZE(push) " $%c[cs]\n\t"
+		CALL_NOSPEC
+		:
+#ifdef CONFIG_X86_64
+		[sp]"=&r"(tmp),
+#endif
+		ASM_CALL_CONSTRAINT
+		:
+		THUNK_TARGET(entry),
+		[ss]"i"(__KERNEL_DS),
+		[cs]"i"(__KERNEL_CS)
+	);
+
+	kvm_after_interrupt(vcpu);
+}
+STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
+
+static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
+	enum exit_fastpath_completion *exit_fastpath)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
+		handle_external_interrupt_irqoff(vcpu);
+	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
+		handle_exception_nmi_irqoff(vmx);
+	else if (!is_guest_mode(vcpu) &&
+		vmx->exit_reason == EXIT_REASON_MSR_WRITE)
+		*exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
+}
+
+static bool vmx_has_emulated_msr(int index)
+{
+	switch (index) {
+	case MSR_IA32_SMBASE:
+		/*
+		 * We cannot do SMM unless we can run the guest in big
+		 * real mode.
+		 */
+		return enable_unrestricted_guest || emulate_invalid_guest_state;
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		return nested;
+	case MSR_AMD64_VIRT_SPEC_CTRL:
+		/* This is AMD only.  */
+		return false;
+	default:
+		return true;
+	}
+}
+
+static bool vmx_pt_supported(void)
+{
+	return pt_mode == PT_MODE_HOST_GUEST;
+}
+
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+	u32 exit_intr_info;
+	bool unblock_nmi;
+	u8 vector;
+	bool idtv_info_valid;
+
+	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+	if (enable_vnmi) {
+		if (vmx->loaded_vmcs->nmi_known_unmasked)
+			return;
+		/*
+		 * Can't use vmx->exit_intr_info since we're not sure what
+		 * the exit reason is.
+		 */
+		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+		/*
+		 * SDM 3: 27.7.1.2 (September 2008)
+		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
+		 * a guest IRET fault.
+		 * SDM 3: 23.2.2 (September 2008)
+		 * Bit 12 is undefined in any of the following cases:
+		 *  If the VM exit sets the valid bit in the IDT-vectoring
+		 *   information field.
+		 *  If the VM exit is due to a double fault.
+		 */
+		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+		    vector != DF_VECTOR && !idtv_info_valid)
+			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+				      GUEST_INTR_STATE_NMI);
+		else
+			vmx->loaded_vmcs->nmi_known_unmasked =
+				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+				  & GUEST_INTR_STATE_NMI);
+	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
+		vmx->loaded_vmcs->vnmi_blocked_time +=
+			ktime_to_ns(ktime_sub(ktime_get(),
+					      vmx->loaded_vmcs->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+				      u32 idt_vectoring_info,
+				      int instr_len_field,
+				      int error_code_field)
+{
+	u8 vector;
+	int type;
+	bool idtv_info_valid;
+
+	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+	vcpu->arch.nmi_injected = false;
+	kvm_clear_exception_queue(vcpu);
+	kvm_clear_interrupt_queue(vcpu);
+
+	if (!idtv_info_valid)
+		return;
+
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+
+	switch (type) {
+	case INTR_TYPE_NMI_INTR:
+		vcpu->arch.nmi_injected = true;
+		/*
+		 * SDM 3: 27.7.1.2 (September 2008)
+		 * Clear bit "block by NMI" before VM entry if a NMI
+		 * delivery faulted.
+		 */
+		vmx_set_nmi_mask(vcpu, false);
+		break;
+	case INTR_TYPE_SOFT_EXCEPTION:
+		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+		/* fall through */
+	case INTR_TYPE_HARD_EXCEPTION:
+		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+			u32 err = vmcs_read32(error_code_field);
+			kvm_requeue_exception_e(vcpu, vector, err);
+		} else
+			kvm_requeue_exception(vcpu, vector);
+		break;
+	case INTR_TYPE_SOFT_INTR:
+		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+		/* fall through */
+	case INTR_TYPE_EXT_INTR:
+		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+		break;
+	default:
+		break;
+	}
+}
+
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+{
+	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+				  VM_EXIT_INSTRUCTION_LEN,
+				  IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+	__vmx_complete_interrupts(vcpu,
+				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+				  VM_ENTRY_INSTRUCTION_LEN,
+				  VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+}
+
+static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+{
+	int i, nr_msrs;
+	struct perf_guest_switch_msr *msrs;
+
+	msrs = perf_guest_get_msrs(&nr_msrs);
+
+	if (!msrs)
+		return;
+
+	for (i = 0; i < nr_msrs; i++)
+		if (msrs[i].host == msrs[i].guest)
+			clear_atomic_switch_msr(vmx, msrs[i].msr);
+		else
+			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+					msrs[i].host, false);
+}
+
+static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
+{
+	u32 host_umwait_control;
+
+	if (!vmx_has_waitpkg(vmx))
+		return;
+
+	host_umwait_control = get_umwait_control_msr();
+
+	if (vmx->msr_ia32_umwait_control != host_umwait_control)
+		add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
+			vmx->msr_ia32_umwait_control,
+			host_umwait_control, false);
+	else
+		clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
+}
+
+static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u64 tscl;
+	u32 delta_tsc;
+
+	if (vmx->req_immediate_exit) {
+		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
+		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
+	} else if (vmx->hv_deadline_tsc != -1) {
+		tscl = rdtsc();
+		if (vmx->hv_deadline_tsc > tscl)
+			/* set_hv_timer ensures the delta fits in 32-bits */
+			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
+				cpu_preemption_timer_multi);
+		else
+			delta_tsc = 0;
+
+		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
+		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
+	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
+		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
+		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
+	}
+}
+
+void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
+{
+	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
+		vmx->loaded_vmcs->host_state.rsp = host_rsp;
+		vmcs_writel(HOST_RSP, host_rsp);
+	}
+}
+
+bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
+
+static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long cr3, cr4;
+
+	/* Record the guest's net vcpu time for enforced NMI injections. */
+	if (unlikely(!enable_vnmi &&
+		     vmx->loaded_vmcs->soft_vnmi_blocked))
+		vmx->loaded_vmcs->entry_time = ktime_get();
+
+	/* Don't enter VMX if guest state is invalid, let the exit handler
+	   start emulation until we arrive back to a valid state */
+	if (vmx->emulation_required)
+		return;
+
+	if (vmx->ple_window_dirty) {
+		vmx->ple_window_dirty = false;
+		vmcs_write32(PLE_WINDOW, vmx->ple_window);
+	}
+
+	if (vmx->nested.need_vmcs12_to_shadow_sync)
+		nested_sync_vmcs12_to_shadow(vcpu);
+
+	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
+		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
+		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+
+	cr3 = __get_current_cr3_fast();
+	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+		vmcs_writel(HOST_CR3, cr3);
+		vmx->loaded_vmcs->host_state.cr3 = cr3;
+	}
+
+	cr4 = cr4_read_shadow();
+	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+		vmcs_writel(HOST_CR4, cr4);
+		vmx->loaded_vmcs->host_state.cr4 = cr4;
+	}
+
+	/* When single-stepping over STI and MOV SS, we must clear the
+	 * corresponding interruptibility bits in the guest state. Otherwise
+	 * vmentry fails as it then expects bit 14 (BS) in pending debug
+	 * exceptions being set, but that's not correct for the guest debugging
+	 * case. */
+	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+		vmx_set_interrupt_shadow(vcpu, 0);
+
+	kvm_load_guest_xsave_state(vcpu);
+
+	if (static_cpu_has(X86_FEATURE_PKU) &&
+	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
+	    vcpu->arch.pkru != vmx->host_pkru)
+		__write_pkru(vcpu->arch.pkru);
+
+	pt_guest_enter(vmx);
+
+	atomic_switch_perf_msrs(vmx);
+	atomic_switch_umwait_control_msr(vmx);
+
+	if (enable_preemption_timer)
+		vmx_update_hv_timer(vcpu);
+
+	if (lapic_in_kernel(vcpu) &&
+		vcpu->arch.apic->lapic_timer.timer_advance_ns)
+		kvm_wait_lapic_expire(vcpu);
+
+	/*
+	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
+	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
+	 * is no need to worry about the conditional branch over the wrmsr
+	 * being speculatively taken.
+	 */
+	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
+
+	/* L1D Flush includes CPU buffer clear to mitigate MDS */
+	if (static_branch_unlikely(&vmx_l1d_should_flush))
+		vmx_l1d_flush(vcpu);
+	else if (static_branch_unlikely(&mds_user_clear))
+		mds_clear_cpu_buffers();
+
+	if (vcpu->arch.cr2 != read_cr2())
+		write_cr2(vcpu->arch.cr2);
+
+	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
+				   vmx->loaded_vmcs->launched);
+
+	vcpu->arch.cr2 = read_cr2();
+
+	/*
+	 * We do not use IBRS in the kernel. If this vCPU has used the
+	 * SPEC_CTRL MSR it may have left it on; save the value and
+	 * turn it off. This is much more efficient than blindly adding
+	 * it to the atomic save/restore list. Especially as the former
+	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
+	 *
+	 * For non-nested case:
+	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
+	 * save it.
+	 *
+	 * For nested case:
+	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
+	 * save it.
+	 */
+	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
+		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
+
+	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
+
+	/* All fields are clean at this point */
+	if (static_branch_unlikely(&enable_evmcs))
+		current_evmcs->hv_clean_fields |=
+			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
+
+	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+	if (vmx->host_debugctlmsr)
+		update_debugctlmsr(vmx->host_debugctlmsr);
+
+#ifndef CONFIG_X86_64
+	/*
+	 * The sysexit path does not restore ds/es, so we must set them to
+	 * a reasonable value ourselves.
+	 *
+	 * We can't defer this to vmx_prepare_switch_to_host() since that
+	 * function may be executed in interrupt context, which saves and
+	 * restore segments around it, nullifying its effect.
+	 */
+	loadsegment(ds, __USER_DS);
+	loadsegment(es, __USER_DS);
+#endif
+
+	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
+				  | (1 << VCPU_EXREG_RFLAGS)
+				  | (1 << VCPU_EXREG_PDPTR)
+				  | (1 << VCPU_EXREG_SEGMENTS)
+				  | (1 << VCPU_EXREG_CR3));
+	vcpu->arch.regs_dirty = 0;
+
+	pt_guest_exit(vmx);
+
+	/*
+	 * eager fpu is enabled if PKEY is supported and CR4 is switched
+	 * back on host, so it is safe to read guest PKRU from current
+	 * XSAVE.
+	 */
+	if (static_cpu_has(X86_FEATURE_PKU) &&
+	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
+		vcpu->arch.pkru = rdpkru();
+		if (vcpu->arch.pkru != vmx->host_pkru)
+			__write_pkru(vmx->host_pkru);
+	}
+
+	kvm_load_host_xsave_state(vcpu);
+
+	vmx->nested.nested_run_pending = 0;
+	vmx->idt_vectoring_info = 0;
+
+	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
+	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
+		kvm_machine_check();
+
+	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+		return;
+
+	vmx->loaded_vmcs->launched = 1;
+	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+
+	vmx_recover_nmi_blocking(vmx);
+	vmx_complete_interrupts(vmx);
+}
+
+static struct kvm *vmx_vm_alloc(void)
+{
+	struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
+					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
+					    PAGE_KERNEL);
+	return &kvm_vmx->kvm;
+}
+
+static void vmx_vm_free(struct kvm *kvm)
+{
+	kfree(kvm->arch.hyperv.hv_pa_pg);
+	vfree(to_kvm_vmx(kvm));
+}
+
+static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (enable_pml)
+		vmx_destroy_pml_buffer(vmx);
+	free_vpid(vmx->vpid);
+	nested_vmx_free_vcpu(vcpu);
+	free_loaded_vmcs(vmx->loaded_vmcs);
+	kvm_vcpu_uninit(vcpu);
+	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
+	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
+	kmem_cache_free(kvm_vcpu_cache, vmx);
+}
+
+static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
+{
+	int err;
+	struct vcpu_vmx *vmx;
+	unsigned long *msr_bitmap;
+	int i, cpu;
+
+	BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
+		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
+
+	vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
+	if (!vmx)
+		return ERR_PTR(-ENOMEM);
+
+	vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
+			GFP_KERNEL_ACCOUNT);
+	if (!vmx->vcpu.arch.user_fpu) {
+		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
+		err = -ENOMEM;
+		goto free_partial_vcpu;
+	}
+
+	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
+			GFP_KERNEL_ACCOUNT);
+	if (!vmx->vcpu.arch.guest_fpu) {
+		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
+		err = -ENOMEM;
+		goto free_user_fpu;
+	}
+
+	vmx->vpid = allocate_vpid();
+
+	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
+	if (err)
+		goto free_vcpu;
+
+	err = -ENOMEM;
+
+	/*
+	 * If PML is turned on, failure on enabling PML just results in failure
+	 * of creating the vcpu, therefore we can simplify PML logic (by
+	 * avoiding dealing with cases, such as enabling PML partially on vcpus
+	 * for the guest), etc.
+	 */
+	if (enable_pml) {
+		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+		if (!vmx->pml_pg)
+			goto uninit_vcpu;
+	}
+
+	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
+
+	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
+		u32 index = vmx_msr_index[i];
+		u32 data_low, data_high;
+		int j = vmx->nmsrs;
+
+		if (rdmsr_safe(index, &data_low, &data_high) < 0)
+			continue;
+		if (wrmsr_safe(index, data_low, data_high) < 0)
+			continue;
+
+		vmx->guest_msrs[j].index = i;
+		vmx->guest_msrs[j].data = 0;
+		switch (index) {
+		case MSR_IA32_TSX_CTRL:
+			/*
+			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
+			 * let's avoid changing CPUID bits under the host
+			 * kernel's feet.
+			 */
+			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
+			break;
+		default:
+			vmx->guest_msrs[j].mask = -1ull;
+			break;
+		}
+		++vmx->nmsrs;
+	}
+
+	err = alloc_loaded_vmcs(&vmx->vmcs01);
+	if (err < 0)
+		goto free_pml;
+
+	msr_bitmap = vmx->vmcs01.msr_bitmap;
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
+	if (kvm_cstate_in_guest(kvm)) {
+		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
+		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
+		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
+		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
+	}
+	vmx->msr_bitmap_mode = 0;
+
+	vmx->loaded_vmcs = &vmx->vmcs01;
+	cpu = get_cpu();
+	vmx_vcpu_load(&vmx->vcpu, cpu);
+	vmx->vcpu.cpu = cpu;
+	init_vmcs(vmx);
+	vmx_vcpu_put(&vmx->vcpu);
+	put_cpu();
+	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
+		err = alloc_apic_access_page(kvm);
+		if (err)
+			goto free_vmcs;
+	}
+
+	if (enable_ept && !enable_unrestricted_guest) {
+		err = init_rmode_identity_map(kvm);
+		if (err)
+			goto free_vmcs;
+	}
+
+	if (nested)
+		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
+					   vmx_capability.ept,
+					   kvm_vcpu_apicv_active(&vmx->vcpu));
+	else
+		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
+
+	vmx->nested.posted_intr_nv = -1;
+	vmx->nested.current_vmptr = -1ull;
+
+	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
+
+	/*
+	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
+	 * or POSTED_INTR_WAKEUP_VECTOR.
+	 */
+	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
+	vmx->pi_desc.sn = 1;
+
+	vmx->ept_pointer = INVALID_PAGE;
+
+	return &vmx->vcpu;
+
+free_vmcs:
+	free_loaded_vmcs(vmx->loaded_vmcs);
+free_pml:
+	vmx_destroy_pml_buffer(vmx);
+uninit_vcpu:
+	kvm_vcpu_uninit(&vmx->vcpu);
+free_vcpu:
+	free_vpid(vmx->vpid);
+	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
+free_user_fpu:
+	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
+free_partial_vcpu:
+	kmem_cache_free(kvm_vcpu_cache, vmx);
+	return ERR_PTR(err);
+}
+
+#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
+#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
+
+static int vmx_vm_init(struct kvm *kvm)
+{
+	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+	if (!ple_gap)
+		kvm->arch.pause_in_guest = true;
+
+	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
+		switch (l1tf_mitigation) {
+		case L1TF_MITIGATION_OFF:
+		case L1TF_MITIGATION_FLUSH_NOWARN:
+			/* 'I explicitly don't care' is set */
+			break;
+		case L1TF_MITIGATION_FLUSH:
+		case L1TF_MITIGATION_FLUSH_NOSMT:
+		case L1TF_MITIGATION_FULL:
+			/*
+			 * Warn upon starting the first VM in a potentially
+			 * insecure environment.
+			 */
+			if (sched_smt_active())
+				pr_warn_once(L1TF_MSG_SMT);
+			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
+				pr_warn_once(L1TF_MSG_L1D);
+			break;
+		case L1TF_MITIGATION_FULL_FORCE:
+			/* Flush is enforced */
+			break;
+		}
+	}
+	return 0;
+}
+
+static int __init vmx_check_processor_compat(void)
+{
+	struct vmcs_config vmcs_conf;
+	struct vmx_capability vmx_cap;
+
+	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
+		return -EIO;
+	if (nested)
+		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
+					   enable_apicv);
+	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+				smp_processor_id());
+		return -EIO;
+	}
+	return 0;
+}
+
+static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+	u8 cache;
+	u64 ipat = 0;
+
+	/* For VT-d and EPT combination
+	 * 1. MMIO: always map as UC
+	 * 2. EPT with VT-d:
+	 *   a. VT-d without snooping control feature: can't guarantee the
+	 *	result, try to trust guest.
+	 *   b. VT-d with snooping control feature: snooping control feature of
+	 *	VT-d engine can guarantee the cache correctness. Just set it
+	 *	to WB to keep consistent with host. So the same as item 3.
+	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
+	 *    consistent with host MTRR
+	 */
+	if (is_mmio) {
+		cache = MTRR_TYPE_UNCACHABLE;
+		goto exit;
+	}
+
+	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
+		ipat = VMX_EPT_IPAT_BIT;
+		cache = MTRR_TYPE_WRBACK;
+		goto exit;
+	}
+
+	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
+		ipat = VMX_EPT_IPAT_BIT;
+		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+			cache = MTRR_TYPE_WRBACK;
+		else
+			cache = MTRR_TYPE_UNCACHABLE;
+		goto exit;
+	}
+
+	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
+
+exit:
+	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
+}
+
+static int vmx_get_lpage_level(void)
+{
+	if (enable_ept && !cpu_has_vmx_ept_1g_page())
+		return PT_DIRECTORY_LEVEL;
+	else
+		/* For shadow and EPT supported 1GB page */
+		return PT_PDPE_LEVEL;
+}
+
+static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+	/*
+	 * These bits in the secondary execution controls field
+	 * are dynamic, the others are mostly based on the hypervisor
+	 * architecture and the guest's CPUID.  Do not touch the
+	 * dynamic bits.
+	 */
+	u32 mask =
+		SECONDARY_EXEC_SHADOW_VMCS |
+		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+		SECONDARY_EXEC_DESC;
+
+	u32 new_ctl = vmx->secondary_exec_control;
+	u32 cur_ctl = secondary_exec_controls_get(vmx);
+
+	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
+}
+
+/*
+ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
+ * (indicating "allowed-1") if they are supported in the guest's CPUID.
+ */
+static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_cpuid_entry2 *entry;
+
+	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
+	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
+
+#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
+	if (entry && (entry->_reg & (_cpuid_mask)))			\
+		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
+} while (0)
+
+	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
+	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
+	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
+	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
+	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
+	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
+	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
+	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
+	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
+	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
+	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
+	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
+	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
+	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
+	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
+
+	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
+	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
+	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
+	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
+	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
+	cr4_fixed1_update(X86_CR4_LA57,       ecx, bit(X86_FEATURE_LA57));
+
+#undef cr4_fixed1_update
+}
+
+static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (kvm_mpx_supported()) {
+		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
+
+		if (mpx_enabled) {
+			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+		} else {
+			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
+			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
+		}
+	}
+}
+
+static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_cpuid_entry2 *best = NULL;
+	int i;
+
+	for (i = 0; i < PT_CPUID_LEAVES; i++) {
+		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
+		if (!best)
+			return;
+		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
+		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
+		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
+		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
+	}
+
+	/* Get the number of configurable Address Ranges for filtering */
+	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_num_address_ranges);
+
+	/* Initialize and clear the no dependency bits */
+	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
+			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
+
+	/*
+	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
+	 * will inject an #GP
+	 */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
+
+	/*
+	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
+	 * PSBFreq can be set
+	 */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
+		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
+				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
+
+	/*
+	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
+	 * MTCFreq can be set
+	 */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
+		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
+				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
+
+	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
+		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
+							RTIT_CTL_PTW_EN);
+
+	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
+
+	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
+
+	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
+
+	/* unmask address range configure area */
+	for (i = 0; i < vmx->pt_desc.addr_range; i++)
+		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
+}
+
+static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
+	vcpu->arch.xsaves_enabled = false;
+
+	if (cpu_has_secondary_exec_ctrls()) {
+		vmx_compute_secondary_exec_control(vmx);
+		vmcs_set_secondary_exec_control(vmx);
+	}
+
+	if (nested_vmx_allowed(vcpu))
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+			FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
+			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+	else
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+			~(FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
+			  FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX);
+
+	if (nested_vmx_allowed(vcpu)) {
+		nested_vmx_cr_fixed1_bits_update(vcpu);
+		nested_vmx_entry_exit_ctls_update(vcpu);
+	}
+
+	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
+			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
+		update_intel_pt_cfg(vcpu);
+
+	if (boot_cpu_has(X86_FEATURE_RTM)) {
+		struct shared_msr_entry *msr;
+		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
+		if (msr) {
+			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
+			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
+		}
+	}
+}
+
+static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+{
+	if (func == 1 && nested)
+		entry->ecx |= bit(X86_FEATURE_VMX);
+}
+
+static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
+{
+	to_vmx(vcpu)->req_immediate_exit = true;
+}
+
+static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+			       struct x86_instruction_info *info,
+			       enum x86_intercept_stage stage)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+
+	/*
+	 * RDPID causes #UD if disabled through secondary execution controls.
+	 * Because it is marked as EmulateOnUD, we need to intercept it here.
+	 */
+	if (info->intercept == x86_intercept_rdtscp &&
+	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
+		ctxt->exception.vector = UD_VECTOR;
+		ctxt->exception.error_code_valid = false;
+		return X86EMUL_PROPAGATE_FAULT;
+	}
+
+	/* TODO: check more intercepts... */
+	return X86EMUL_CONTINUE;
+}
+
+#ifdef CONFIG_X86_64
+/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
+static inline int u64_shl_div_u64(u64 a, unsigned int shift,
+				  u64 divisor, u64 *result)
+{
+	u64 low = a << shift, high = a >> (64 - shift);
+
+	/* To avoid the overflow on divq */
+	if (high >= divisor)
+		return 1;
+
+	/* Low hold the result, high hold rem which is discarded */
+	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
+	    "rm" (divisor), "0" (low), "1" (high));
+	*result = low;
+
+	return 0;
+}
+
+static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
+			    bool *expired)
+{
+	struct vcpu_vmx *vmx;
+	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
+	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
+
+	if (kvm_mwait_in_guest(vcpu->kvm) ||
+		kvm_can_post_timer_interrupt(vcpu))
+		return -EOPNOTSUPP;
+
+	vmx = to_vmx(vcpu);
+	tscl = rdtsc();
+	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
+	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
+	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
+						    ktimer->timer_advance_ns);
+
+	if (delta_tsc > lapic_timer_advance_cycles)
+		delta_tsc -= lapic_timer_advance_cycles;
+	else
+		delta_tsc = 0;
+
+	/* Convert to host delta tsc if tsc scaling is enabled */
+	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
+	    delta_tsc && u64_shl_div_u64(delta_tsc,
+				kvm_tsc_scaling_ratio_frac_bits,
+				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
+		return -ERANGE;
+
+	/*
+	 * If the delta tsc can't fit in the 32 bit after the multi shift,
+	 * we can't use the preemption timer.
+	 * It's possible that it fits on later vmentries, but checking
+	 * on every vmentry is costly so we just use an hrtimer.
+	 */
+	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
+		return -ERANGE;
+
+	vmx->hv_deadline_tsc = tscl + delta_tsc;
+	*expired = !delta_tsc;
+	return 0;
+}
+
+static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
+{
+	to_vmx(vcpu)->hv_deadline_tsc = -1;
+}
+#endif
+
+static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+	if (!kvm_pause_in_guest(vcpu->kvm))
+		shrink_ple_window(vcpu);
+}
+
+static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+				     struct kvm_memory_slot *slot)
+{
+	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+}
+
+static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+				       struct kvm_memory_slot *slot)
+{
+	kvm_mmu_slot_set_dirty(kvm, slot);
+}
+
+static void vmx_flush_log_dirty(struct kvm *kvm)
+{
+	kvm_flush_pml_buffers(kvm);
+}
+
+static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	gpa_t gpa, dst;
+
+	if (is_guest_mode(vcpu)) {
+		WARN_ON_ONCE(vmx->nested.pml_full);
+
+		/*
+		 * Check if PML is enabled for the nested guest.
+		 * Whether eptp bit 6 is set is already checked
+		 * as part of A/D emulation.
+		 */
+		vmcs12 = get_vmcs12(vcpu);
+		if (!nested_cpu_has_pml(vmcs12))
+			return 0;
+
+		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
+			vmx->nested.pml_full = true;
+			return 1;
+		}
+
+		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
+		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
+
+		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
+					 offset_in_page(dst), sizeof(gpa)))
+			return 0;
+
+		vmcs12->guest_pml_index--;
+	}
+
+	return 0;
+}
+
+static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+					   struct kvm_memory_slot *memslot,
+					   gfn_t offset, unsigned long mask)
+{
+	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+}
+
+static void __pi_post_block(struct kvm_vcpu *vcpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+	struct pi_desc old, new;
+	unsigned int dest;
+
+	do {
+		old.control = new.control = pi_desc->control;
+		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
+		     "Wakeup handler not enabled while the VCPU is blocked\n");
+
+		dest = cpu_physical_id(vcpu->cpu);
+
+		if (x2apic_enabled())
+			new.ndst = dest;
+		else
+			new.ndst = (dest << 8) & 0xFF00;
+
+		/* set 'NV' to 'notification vector' */
+		new.nv = POSTED_INTR_VECTOR;
+	} while (cmpxchg64(&pi_desc->control, old.control,
+			   new.control) != old.control);
+
+	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
+		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+		list_del(&vcpu->blocked_vcpu_list);
+		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+		vcpu->pre_pcpu = -1;
+	}
+}
+
+/*
+ * This routine does the following things for vCPU which is going
+ * to be blocked if VT-d PI is enabled.
+ * - Store the vCPU to the wakeup list, so when interrupts happen
+ *   we can find the right vCPU to wake up.
+ * - Change the Posted-interrupt descriptor as below:
+ *      'NDST' <-- vcpu->pre_pcpu
+ *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
+ * - If 'ON' is set during this process, which means at least one
+ *   interrupt is posted for this vCPU, we cannot block it, in
+ *   this case, return 1, otherwise, return 0.
+ *
+ */
+static int pi_pre_block(struct kvm_vcpu *vcpu)
+{
+	unsigned int dest;
+	struct pi_desc old, new;
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
+		!kvm_vcpu_apicv_active(vcpu))
+		return 0;
+
+	WARN_ON(irqs_disabled());
+	local_irq_disable();
+	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
+		vcpu->pre_pcpu = vcpu->cpu;
+		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+		list_add_tail(&vcpu->blocked_vcpu_list,
+			      &per_cpu(blocked_vcpu_on_cpu,
+				       vcpu->pre_pcpu));
+		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+	}
+
+	do {
+		old.control = new.control = pi_desc->control;
+
+		WARN((pi_desc->sn == 1),
+		     "Warning: SN field of posted-interrupts "
+		     "is set before blocking\n");
+
+		/*
+		 * Since vCPU can be preempted during this process,
+		 * vcpu->cpu could be different with pre_pcpu, we
+		 * need to set pre_pcpu as the destination of wakeup
+		 * notification event, then we can find the right vCPU
+		 * to wakeup in wakeup handler if interrupts happen
+		 * when the vCPU is in blocked state.
+		 */
+		dest = cpu_physical_id(vcpu->pre_pcpu);
+
+		if (x2apic_enabled())
+			new.ndst = dest;
+		else
+			new.ndst = (dest << 8) & 0xFF00;
+
+		/* set 'NV' to 'wakeup vector' */
+		new.nv = POSTED_INTR_WAKEUP_VECTOR;
+	} while (cmpxchg64(&pi_desc->control, old.control,
+			   new.control) != old.control);
+
+	/* We should not block the vCPU if an interrupt is posted for it.  */
+	if (pi_test_on(pi_desc) == 1)
+		__pi_post_block(vcpu);
+
+	local_irq_enable();
+	return (vcpu->pre_pcpu == -1);
+}
+
+static int vmx_pre_block(struct kvm_vcpu *vcpu)
+{
+	if (pi_pre_block(vcpu))
+		return 1;
+
+	if (kvm_lapic_hv_timer_in_use(vcpu))
+		kvm_lapic_switch_to_sw_timer(vcpu);
+
+	return 0;
+}
+
+static void pi_post_block(struct kvm_vcpu *vcpu)
+{
+	if (vcpu->pre_pcpu == -1)
+		return;
+
+	WARN_ON(irqs_disabled());
+	local_irq_disable();
+	__pi_post_block(vcpu);
+	local_irq_enable();
+}
+
+static void vmx_post_block(struct kvm_vcpu *vcpu)
+{
+	if (kvm_x86_ops->set_hv_timer)
+		kvm_lapic_switch_to_hv_timer(vcpu);
+
+	pi_post_block(vcpu);
+}
+
+/*
+ * vmx_update_pi_irte - set IRTE for Posted-Interrupts
+ *
+ * @kvm: kvm
+ * @host_irq: host irq of the interrupt
+ * @guest_irq: gsi of the interrupt
+ * @set: set or unset PI
+ * returns 0 on success, < 0 on failure
+ */
+static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+			      uint32_t guest_irq, bool set)
+{
+	struct kvm_kernel_irq_routing_entry *e;
+	struct kvm_irq_routing_table *irq_rt;
+	struct kvm_lapic_irq irq;
+	struct kvm_vcpu *vcpu;
+	struct vcpu_data vcpu_info;
+	int idx, ret = 0;
+
+	if (!kvm_arch_has_assigned_device(kvm) ||
+		!irq_remapping_cap(IRQ_POSTING_CAP) ||
+		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
+		return 0;
+
+	idx = srcu_read_lock(&kvm->irq_srcu);
+	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
+	if (guest_irq >= irq_rt->nr_rt_entries ||
+	    hlist_empty(&irq_rt->map[guest_irq])) {
+		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
+			     guest_irq, irq_rt->nr_rt_entries);
+		goto out;
+	}
+
+	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
+		if (e->type != KVM_IRQ_ROUTING_MSI)
+			continue;
+		/*
+		 * VT-d PI cannot support posting multicast/broadcast
+		 * interrupts to a vCPU, we still use interrupt remapping
+		 * for these kind of interrupts.
+		 *
+		 * For lowest-priority interrupts, we only support
+		 * those with single CPU as the destination, e.g. user
+		 * configures the interrupts via /proc/irq or uses
+		 * irqbalance to make the interrupts single-CPU.
+		 *
+		 * We will support full lowest-priority interrupt later.
+		 *
+		 * In addition, we can only inject generic interrupts using
+		 * the PI mechanism, refuse to route others through it.
+		 */
+
+		kvm_set_msi_irq(kvm, e, &irq);
+		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
+		    !kvm_irq_is_postable(&irq)) {
+			/*
+			 * Make sure the IRTE is in remapped mode if
+			 * we don't handle it in posted mode.
+			 */
+			ret = irq_set_vcpu_affinity(host_irq, NULL);
+			if (ret < 0) {
+				printk(KERN_INFO
+				   "failed to back to remapped mode, irq: %u\n",
+				   host_irq);
+				goto out;
+			}
+
+			continue;
+		}
+
+		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
+		vcpu_info.vector = irq.vector;
+
+		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
+				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
+
+		if (set)
+			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
+		else
+			ret = irq_set_vcpu_affinity(host_irq, NULL);
+
+		if (ret < 0) {
+			printk(KERN_INFO "%s: failed to update PI IRTE\n",
+					__func__);
+			goto out;
+		}
+	}
+
+	ret = 0;
+out:
+	srcu_read_unlock(&kvm->irq_srcu, idx);
+	return ret;
+}
+
+static void vmx_setup_mce(struct kvm_vcpu *vcpu)
+{
+	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+			FEATURE_CONTROL_LMCE;
+	else
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+			~FEATURE_CONTROL_LMCE;
+}
+
+static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
+{
+	/* we need a nested vmexit to enter SMM, postpone if run is pending */
+	if (to_vmx(vcpu)->nested.nested_run_pending)
+		return 0;
+	return 1;
+}
+
+static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
+	if (vmx->nested.smm.guest_mode)
+		nested_vmx_vmexit(vcpu, -1, 0, 0);
+
+	vmx->nested.smm.vmxon = vmx->nested.vmxon;
+	vmx->nested.vmxon = false;
+	vmx_clear_hlt(vcpu);
+	return 0;
+}
+
+static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int ret;
+
+	if (vmx->nested.smm.vmxon) {
+		vmx->nested.vmxon = true;
+		vmx->nested.smm.vmxon = false;
+	}
+
+	if (vmx->nested.smm.guest_mode) {
+		ret = nested_vmx_enter_non_root_mode(vcpu, false);
+		if (ret)
+			return ret;
+
+		vmx->nested.smm.guest_mode = false;
+	}
+	return 0;
+}
+
+static int enable_smi_window(struct kvm_vcpu *vcpu)
+{
+	return 0;
+}
+
+static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
+{
+	return false;
+}
+
+static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.vmxon;
+}
+
+static __init int hardware_setup(void)
+{
+	unsigned long host_bndcfgs;
+	struct desc_ptr dt;
+	int r, i;
+
+	rdmsrl_safe(MSR_EFER, &host_efer);
+
+	store_idt(&dt);
+	host_idt_base = dt.address;
+
+	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
+		kvm_define_shared_msr(i, vmx_msr_index[i]);
+
+	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
+		return -EIO;
+
+	if (boot_cpu_has(X86_FEATURE_NX))
+		kvm_enable_efer_bits(EFER_NX);
+
+	if (boot_cpu_has(X86_FEATURE_MPX)) {
+		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
+		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
+	}
+
+	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
+	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
+		enable_vpid = 0;
+
+	if (!cpu_has_vmx_ept() ||
+	    !cpu_has_vmx_ept_4levels() ||
+	    !cpu_has_vmx_ept_mt_wb() ||
+	    !cpu_has_vmx_invept_global())
+		enable_ept = 0;
+
+	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
+		enable_ept_ad_bits = 0;
+
+	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
+		enable_unrestricted_guest = 0;
+
+	if (!cpu_has_vmx_flexpriority())
+		flexpriority_enabled = 0;
+
+	if (!cpu_has_virtual_nmis())
+		enable_vnmi = 0;
+
+	/*
+	 * set_apic_access_page_addr() is used to reload apic access
+	 * page upon invalidation.  No need to do anything if not
+	 * using the APIC_ACCESS_ADDR VMCS field.
+	 */
+	if (!flexpriority_enabled)
+		kvm_x86_ops->set_apic_access_page_addr = NULL;
+
+	if (!cpu_has_vmx_tpr_shadow())
+		kvm_x86_ops->update_cr8_intercept = NULL;
+
+	if (enable_ept && !cpu_has_vmx_ept_2m_page())
+		kvm_disable_largepages();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
+	    && enable_ept) {
+		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
+		kvm_x86_ops->tlb_remote_flush_with_range =
+				hv_remote_flush_tlb_with_range;
+	}
+#endif
+
+	if (!cpu_has_vmx_ple()) {
+		ple_gap = 0;
+		ple_window = 0;
+		ple_window_grow = 0;
+		ple_window_max = 0;
+		ple_window_shrink = 0;
+	}
+
+	if (!cpu_has_vmx_apicv()) {
+		enable_apicv = 0;
+		kvm_x86_ops->sync_pir_to_irr = NULL;
+	}
+
+	if (cpu_has_vmx_tsc_scaling()) {
+		kvm_has_tsc_control = true;
+		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
+		kvm_tsc_scaling_ratio_frac_bits = 48;
+	}
+
+	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
+
+	if (enable_ept)
+		vmx_enable_tdp();
+	else
+		kvm_disable_tdp();
+
+	/*
+	 * Only enable PML when hardware supports PML feature, and both EPT
+	 * and EPT A/D bit features are enabled -- PML depends on them to work.
+	 */
+	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+		enable_pml = 0;
+
+	if (!enable_pml) {
+		kvm_x86_ops->slot_enable_log_dirty = NULL;
+		kvm_x86_ops->slot_disable_log_dirty = NULL;
+		kvm_x86_ops->flush_log_dirty = NULL;
+		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
+	}
+
+	if (!cpu_has_vmx_preemption_timer())
+		enable_preemption_timer = false;
+
+	if (enable_preemption_timer) {
+		u64 use_timer_freq = 5000ULL * 1000 * 1000;
+		u64 vmx_msr;
+
+		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+		cpu_preemption_timer_multi =
+			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
+
+		if (tsc_khz)
+			use_timer_freq = (u64)tsc_khz * 1000;
+		use_timer_freq >>= cpu_preemption_timer_multi;
+
+		/*
+		 * KVM "disables" the preemption timer by setting it to its max
+		 * value.  Don't use the timer if it might cause spurious exits
+		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
+		 */
+		if (use_timer_freq > 0xffffffffu / 10)
+			enable_preemption_timer = false;
+	}
+
+	if (!enable_preemption_timer) {
+		kvm_x86_ops->set_hv_timer = NULL;
+		kvm_x86_ops->cancel_hv_timer = NULL;
+		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
+	}
+
+	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
+
+	kvm_mce_cap_supported |= MCG_LMCE_P;
+
+	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
+		return -EINVAL;
+	if (!enable_ept || !cpu_has_vmx_intel_pt())
+		pt_mode = PT_MODE_SYSTEM;
+
+	if (nested) {
+		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
+					   vmx_capability.ept, enable_apicv);
+
+		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
+		if (r)
+			return r;
+	}
+
+	r = alloc_kvm_area();
+	if (r)
+		nested_vmx_hardware_unsetup();
+	return r;
+}
+
+static __exit void hardware_unsetup(void)
+{
+	if (nested)
+		nested_vmx_hardware_unsetup();
+
+	free_kvm_area();
+}
+
+static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
+	.cpu_has_kvm_support = cpu_has_kvm_support,
+	.disabled_by_bios = vmx_disabled_by_bios,
+	.hardware_setup = hardware_setup,
+	.hardware_unsetup = hardware_unsetup,
+	.check_processor_compatibility = vmx_check_processor_compat,
+	.hardware_enable = hardware_enable,
+	.hardware_disable = hardware_disable,
+	.cpu_has_accelerated_tpr = report_flexpriority,
+	.has_emulated_msr = vmx_has_emulated_msr,
+
+	.vm_init = vmx_vm_init,
+	.vm_alloc = vmx_vm_alloc,
+	.vm_free = vmx_vm_free,
+
+	.vcpu_create = vmx_create_vcpu,
+	.vcpu_free = vmx_free_vcpu,
+	.vcpu_reset = vmx_vcpu_reset,
+
+	.prepare_guest_switch = vmx_prepare_switch_to_guest,
+	.vcpu_load = vmx_vcpu_load,
+	.vcpu_put = vmx_vcpu_put,
+
+	.update_bp_intercept = update_exception_bitmap,
+	.get_msr_feature = vmx_get_msr_feature,
+	.get_msr = vmx_get_msr,
+	.set_msr = vmx_set_msr,
+	.get_segment_base = vmx_get_segment_base,
+	.get_segment = vmx_get_segment,
+	.set_segment = vmx_set_segment,
+	.get_cpl = vmx_get_cpl,
+	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
+	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
+	.set_cr0 = vmx_set_cr0,
+	.set_cr3 = vmx_set_cr3,
+	.set_cr4 = vmx_set_cr4,
+	.set_efer = vmx_set_efer,
+	.get_idt = vmx_get_idt,
+	.set_idt = vmx_set_idt,
+	.get_gdt = vmx_get_gdt,
+	.set_gdt = vmx_set_gdt,
+	.get_dr6 = vmx_get_dr6,
+	.set_dr6 = vmx_set_dr6,
+	.set_dr7 = vmx_set_dr7,
+	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+	.cache_reg = vmx_cache_reg,
+	.get_rflags = vmx_get_rflags,
+	.set_rflags = vmx_set_rflags,
+
+	.tlb_flush = vmx_flush_tlb,
+	.tlb_flush_gva = vmx_flush_tlb_gva,
+
+	.run = vmx_vcpu_run,
+	.handle_exit = vmx_handle_exit,
+	.skip_emulated_instruction = skip_emulated_instruction,
+	.set_interrupt_shadow = vmx_set_interrupt_shadow,
+	.get_interrupt_shadow = vmx_get_interrupt_shadow,
+	.patch_hypercall = vmx_patch_hypercall,
+	.set_irq = vmx_inject_irq,
+	.set_nmi = vmx_inject_nmi,
+	.queue_exception = vmx_queue_exception,
+	.cancel_injection = vmx_cancel_injection,
+	.interrupt_allowed = vmx_interrupt_allowed,
+	.nmi_allowed = vmx_nmi_allowed,
+	.get_nmi_mask = vmx_get_nmi_mask,
+	.set_nmi_mask = vmx_set_nmi_mask,
+	.enable_nmi_window = enable_nmi_window,
+	.enable_irq_window = enable_irq_window,
+	.update_cr8_intercept = update_cr8_intercept,
+	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
+	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+	.get_enable_apicv = vmx_get_enable_apicv,
+	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
+	.load_eoi_exitmap = vmx_load_eoi_exitmap,
+	.apicv_post_state_restore = vmx_apicv_post_state_restore,
+	.hwapic_irr_update = vmx_hwapic_irr_update,
+	.hwapic_isr_update = vmx_hwapic_isr_update,
+	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
+	.sync_pir_to_irr = vmx_sync_pir_to_irr,
+	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
+
+	.set_tss_addr = vmx_set_tss_addr,
+	.set_identity_map_addr = vmx_set_identity_map_addr,
+	.get_tdp_level = get_ept_level,
+	.get_mt_mask = vmx_get_mt_mask,
+
+	.get_exit_info = vmx_get_exit_info,
+
+	.get_lpage_level = vmx_get_lpage_level,
+
+	.cpuid_update = vmx_cpuid_update,
+
+	.rdtscp_supported = vmx_rdtscp_supported,
+	.invpcid_supported = vmx_invpcid_supported,
+
+	.set_supported_cpuid = vmx_set_supported_cpuid,
+
+	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
+	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
+
+	.set_tdp_cr3 = vmx_set_cr3,
+
+	.check_intercept = vmx_check_intercept,
+	.handle_exit_irqoff = vmx_handle_exit_irqoff,
+	.mpx_supported = vmx_mpx_supported,
+	.xsaves_supported = vmx_xsaves_supported,
+	.umip_emulated = vmx_umip_emulated,
+	.pt_supported = vmx_pt_supported,
+
+	.request_immediate_exit = vmx_request_immediate_exit,
+
+	.sched_in = vmx_sched_in,
+
+	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+	.flush_log_dirty = vmx_flush_log_dirty,
+	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+	.write_log_dirty = vmx_write_pml_buffer,
+
+	.pre_block = vmx_pre_block,
+	.post_block = vmx_post_block,
+
+	.pmu_ops = &intel_pmu_ops,
+
+	.update_pi_irte = vmx_update_pi_irte,
+
+#ifdef CONFIG_X86_64
+	.set_hv_timer = vmx_set_hv_timer,
+	.cancel_hv_timer = vmx_cancel_hv_timer,
+#endif
+
+	.setup_mce = vmx_setup_mce,
+
+	.smi_allowed = vmx_smi_allowed,
+	.pre_enter_smm = vmx_pre_enter_smm,
+	.pre_leave_smm = vmx_pre_leave_smm,
+	.enable_smi_window = enable_smi_window,
+
+	.check_nested_events = NULL,
+	.get_nested_state = NULL,
+	.set_nested_state = NULL,
+	.get_vmcs12_pages = NULL,
+	.nested_enable_evmcs = NULL,
+	.nested_get_evmcs_version = NULL,
+	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
+	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
+};
+
+static void vmx_cleanup_l1d_flush(void)
+{
+	if (vmx_l1d_flush_pages) {
+		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
+		vmx_l1d_flush_pages = NULL;
+	}
+	/* Restore state so sysfs ignores VMX */
+	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+}
+
+static void vmx_exit(void)
+{
+#ifdef CONFIG_KEXEC_CORE
+	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+	synchronize_rcu();
+#endif
+
+	kvm_exit();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+	if (static_branch_unlikely(&enable_evmcs)) {
+		int cpu;
+		struct hv_vp_assist_page *vp_ap;
+		/*
+		 * Reset everything to support using non-enlightened VMCS
+		 * access later (e.g. when we reload the module with
+		 * enlightened_vmcs=0)
+		 */
+		for_each_online_cpu(cpu) {
+			vp_ap =	hv_get_vp_assist_page(cpu);
+
+			if (!vp_ap)
+				continue;
+
+			vp_ap->nested_control.features.directhypercall = 0;
+			vp_ap->current_nested_vmcs = 0;
+			vp_ap->enlighten_vmentry = 0;
+		}
+
+		static_branch_disable(&enable_evmcs);
+	}
+#endif
+	vmx_cleanup_l1d_flush();
+}
+module_exit(vmx_exit);
+
+static int __init vmx_init(void)
+{
+	int r;
+
+#if IS_ENABLED(CONFIG_HYPERV)
+	/*
+	 * Enlightened VMCS usage should be recommended and the host needs
+	 * to support eVMCS v1 or above. We can also disable eVMCS support
+	 * with module parameter.
+	 */
+	if (enlightened_vmcs &&
+	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
+	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
+	    KVM_EVMCS_VERSION) {
+		int cpu;
+
+		/* Check that we have assist pages on all online CPUs */
+		for_each_online_cpu(cpu) {
+			if (!hv_get_vp_assist_page(cpu)) {
+				enlightened_vmcs = false;
+				break;
+			}
+		}
+
+		if (enlightened_vmcs) {
+			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
+			static_branch_enable(&enable_evmcs);
+		}
+
+		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
+			vmx_x86_ops.enable_direct_tlbflush
+				= hv_enable_direct_tlbflush;
+
+	} else {
+		enlightened_vmcs = false;
+	}
+#endif
+
+	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
+		     __alignof__(struct vcpu_vmx), THIS_MODULE);
+	if (r)
+		return r;
+
+	/*
+	 * Must be called after kvm_init() so enable_ept is properly set
+	 * up. Hand the parameter mitigation value in which was stored in
+	 * the pre module init parser. If no parameter was given, it will
+	 * contain 'auto' which will be turned into the default 'cond'
+	 * mitigation mode.
+	 */
+	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+	if (r) {
+		vmx_exit();
+		return r;
+	}
+
+#ifdef CONFIG_KEXEC_CORE
+	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+			   crash_vmclear_local_loaded_vmcss);
+#endif
+	vmx_check_vmcs12_offsets();
+
+	return 0;
+}
+module_init(vmx_init);
-- 
2.20.1






[Index of Archives]     [Linux Kernel]     [Kernel Development Newbies]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite Hiking]     [Linux Kernel]     [Linux SCSI]

  Powered by Linux