This is a note to let you know that I've just added the patch titled [PATCH 066/135] pwm: fsl-ftm: Fix clock enable/disable when using PM to the 4.4-stable tree which can be found at: http://www.kernel.org/git/?p=linux/kernel/git/stable/stable-queue.git;a=summary The filename of the patch is: 0066-pwm-fsl-ftm-Fix-clock-enable-disable-when-using-PM.patch and it can be found in the queue-4.4 subdirectory. If you, or anyone else, feels it should not be added to the stable tree, please let <stable@xxxxxxxxxxxxxxx> know about it. >From 61b5ea043d4a2e1223b2ce5d7c65fbf619f8a04e Mon Sep 17 00:00:00 2001 From: Stefan Agner <stefan@xxxxxxxx> Date: Mon, 23 Nov 2015 14:45:07 -0800 Subject: [PATCH 066/135] pwm: fsl-ftm: Fix clock enable/disable when using PM [ Upstream commit 816aec2325e620b6454474372a21f90a8740cb28 ] A FTM PWM instance enables/disables three clocks: The bus clock, the counter clock and the PWM clock. The bus clock gets enabled on pwm_request, whereas the counter and PWM clocks will be enabled upon pwm_enable. The driver has three closesly related issues when enabling/disabling clocks during suspend/resume: - The three clocks are not treated differently in regards to the individual PWM state enabled/requested. This can lead to clocks getting disabled which have not been enabled in the first place (a PWM channel which only has been requested going through suspend/resume). - When entering suspend, the current behavior relies on the FTM_OUTMASK register: If a PWM output is unmasked, the driver assumes the clocks are enabled. However, some PWM instances have only 2 channels connected (e.g. Vybrid's FTM1). In that case, the FTM_OUTMASK reads 0x3 if all channels are disabled, even if the code wrote 0xff to it before. For those PWM instances, the current approach to detect enabled PWM signals does not work. - A third issue applies to the bus clock only, which can get enabled multiple times (once for each PWM channel of a PWM chip). This is fine, however when entering suspend mode, the clock only gets disabled once. This change introduces a different approach by relying on the enable and prepared counters of the clock framework and using the frameworks PWM signal states to address all three issues. Clocks get disabled during suspend and back enabled on resume regarding to the PWM channels individual state (requested/enabled). Since we do not count the clock enables in the driver, this change no longer clears the Status and Control registers Clock Source Selection (FTM_SC[CLKS]). However, since we disable the selected clock anyway, and we explicitly select the clock source on reenabling a PWM channel this approach should not make a difference in practice. Signed-off-by: Stefan Agner <stefan@xxxxxxxx> Signed-off-by: Thierry Reding <thierry.reding@xxxxxxxxx> Signed-off-by: Sasha Levin <alexander.levin@xxxxxxxxxxx> Signed-off-by: Greg Kroah-Hartman <gregkh@xxxxxxxxxxxxxxxxxxx> --- drivers/pwm/pwm-fsl-ftm.c | 58 +++++++++++++++++++--------------------------- 1 file changed, 25 insertions(+), 33 deletions(-) --- a/drivers/pwm/pwm-fsl-ftm.c +++ b/drivers/pwm/pwm-fsl-ftm.c @@ -80,7 +80,6 @@ struct fsl_pwm_chip { struct mutex lock; - unsigned int use_count; unsigned int cnt_select; unsigned int clk_ps; @@ -300,9 +299,6 @@ static int fsl_counter_clock_enable(stru { int ret; - if (fpc->use_count++ != 0) - return 0; - /* select counter clock source */ regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_CLK_MASK, FTM_SC_CLK(fpc->cnt_select)); @@ -334,25 +330,6 @@ static int fsl_pwm_enable(struct pwm_chi return ret; } -static void fsl_counter_clock_disable(struct fsl_pwm_chip *fpc) -{ - /* - * already disabled, do nothing - */ - if (fpc->use_count == 0) - return; - - /* there are still users, so can't disable yet */ - if (--fpc->use_count > 0) - return; - - /* no users left, disable PWM counter clock */ - regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_CLK_MASK, 0); - - clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); - clk_disable_unprepare(fpc->clk[fpc->cnt_select]); -} - static void fsl_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); @@ -362,7 +339,8 @@ static void fsl_pwm_disable(struct pwm_c regmap_update_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm), BIT(pwm->hwpwm)); - fsl_counter_clock_disable(fpc); + clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); + clk_disable_unprepare(fpc->clk[fpc->cnt_select]); regmap_read(fpc->regmap, FTM_OUTMASK, &val); if ((val & 0xFF) == 0xFF) @@ -492,17 +470,24 @@ static int fsl_pwm_remove(struct platfor static int fsl_pwm_suspend(struct device *dev) { struct fsl_pwm_chip *fpc = dev_get_drvdata(dev); - u32 val; + int i; regcache_cache_only(fpc->regmap, true); regcache_mark_dirty(fpc->regmap); - /* read from cache */ - regmap_read(fpc->regmap, FTM_OUTMASK, &val); - if ((val & 0xFF) != 0xFF) { + for (i = 0; i < fpc->chip.npwm; i++) { + struct pwm_device *pwm = &fpc->chip.pwms[i]; + + if (!test_bit(PWMF_REQUESTED, &pwm->flags)) + continue; + + clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]); + + if (!pwm_is_enabled(pwm)) + continue; + clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); clk_disable_unprepare(fpc->clk[fpc->cnt_select]); - clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]); } return 0; @@ -511,12 +496,19 @@ static int fsl_pwm_suspend(struct device static int fsl_pwm_resume(struct device *dev) { struct fsl_pwm_chip *fpc = dev_get_drvdata(dev); - u32 val; + int i; + + for (i = 0; i < fpc->chip.npwm; i++) { + struct pwm_device *pwm = &fpc->chip.pwms[i]; + + if (!test_bit(PWMF_REQUESTED, &pwm->flags)) + continue; - /* read from cache */ - regmap_read(fpc->regmap, FTM_OUTMASK, &val); - if ((val & 0xFF) != 0xFF) { clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]); + + if (!pwm_is_enabled(pwm)) + continue; + clk_prepare_enable(fpc->clk[fpc->cnt_select]); clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]); } Patches currently in stable-queue which might be from stefan@xxxxxxxx are queue-4.4/0066-pwm-fsl-ftm-Fix-clock-enable-disable-when-using-PM.patch -- To unsubscribe from this list: send the line "unsubscribe stable" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html