This is a note to let you know that I've just added the patch titled x86/efistub: Call mixed mode boot services on the firmware's stack to the 6.6-stable tree which can be found at: http://www.kernel.org/git/?p=linux/kernel/git/stable/stable-queue.git;a=summary The filename of the patch is: x86-efistub-call-mixed-mode-boot-services-on-the-firmware-s-stack.patch and it can be found in the queue-6.6 subdirectory. If you, or anyone else, feels it should not be added to the stable tree, please let <stable@xxxxxxxxxxxxxxx> know about it. >From cefcd4fe2e3aaf792c14c9e56dab89e3d7a65d02 Mon Sep 17 00:00:00 2001 From: Ard Biesheuvel <ardb@xxxxxxxxxx> Date: Fri, 22 Mar 2024 17:03:58 +0200 Subject: x86/efistub: Call mixed mode boot services on the firmware's stack From: Ard Biesheuvel <ardb@xxxxxxxxxx> commit cefcd4fe2e3aaf792c14c9e56dab89e3d7a65d02 upstream. Normally, the EFI stub calls into the EFI boot services using the stack that was live when the stub was entered. According to the UEFI spec, this stack needs to be at least 128k in size - this might seem large but all asynchronous processing and event handling in EFI runs from the same stack and so quite a lot of space may be used in practice. In mixed mode, the situation is a bit different: the bootloader calls the 32-bit EFI stub entry point, which calls the decompressor's 32-bit entry point, where the boot stack is set up, using a fixed allocation of 16k. This stack is still in use when the EFI stub is started in 64-bit mode, and so all calls back into the EFI firmware will be using the decompressor's limited boot stack. Due to the placement of the boot stack right after the boot heap, any stack overruns have gone unnoticed. However, commit 5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code") moved the definition of the boot heap into C code, and now the boot stack is placed right at the base of BSS, where any overruns will corrupt the end of the .data section. While it would be possible to work around this by increasing the size of the boot stack, doing so would affect all x86 systems, and mixed mode systems are a tiny (and shrinking) fraction of the x86 installed base. So instead, record the firmware stack pointer value when entering from the 32-bit firmware, and switch to this stack every time a EFI boot service call is made. Cc: <stable@xxxxxxxxxx> # v6.1+ Signed-off-by: Ard Biesheuvel <ardb@xxxxxxxxxx> Signed-off-by: Greg Kroah-Hartman <gregkh@xxxxxxxxxxxxxxxxxxx> --- arch/x86/boot/compressed/efi_mixed.S | 9 +++++++++ 1 file changed, 9 insertions(+) --- a/arch/x86/boot/compressed/efi_mixed.S +++ b/arch/x86/boot/compressed/efi_mixed.S @@ -49,6 +49,11 @@ SYM_FUNC_START(startup_64_mixed_mode) lea efi32_boot_args(%rip), %rdx mov 0(%rdx), %edi mov 4(%rdx), %esi + + /* Switch to the firmware's stack */ + movl efi32_boot_sp(%rip), %esp + andl $~7, %esp + #ifdef CONFIG_EFI_HANDOVER_PROTOCOL mov 8(%rdx), %edx // saved bootparams pointer test %edx, %edx @@ -254,6 +259,9 @@ SYM_FUNC_START_LOCAL(efi32_entry) /* Store firmware IDT descriptor */ sidtl (efi32_boot_idt - 1b)(%ebx) + /* Store firmware stack pointer */ + movl %esp, (efi32_boot_sp - 1b)(%ebx) + /* Store boot arguments */ leal (efi32_boot_args - 1b)(%ebx), %ebx movl %ecx, 0(%ebx) @@ -318,5 +326,6 @@ SYM_DATA_END(efi32_boot_idt) SYM_DATA_LOCAL(efi32_boot_cs, .word 0) SYM_DATA_LOCAL(efi32_boot_ds, .word 0) +SYM_DATA_LOCAL(efi32_boot_sp, .long 0) SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0, 0) SYM_DATA(efi_is64, .byte 1) Patches currently in stable-queue which might be from ardb@xxxxxxxxxx are queue-6.6/init-kconfig-lower-gcc-version-check-for-warray-bounds.patch queue-6.6/x86-efistub-call-mixed-mode-boot-services-on-the-firmware-s-stack.patch