Patch "exit: Put an upper limit on how often we can oops" has been added to the 5.10-stable tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This is a note to let you know that I've just added the patch titled

    exit: Put an upper limit on how often we can oops

to the 5.10-stable tree which can be found at:
    http://www.kernel.org/git/?p=linux/kernel/git/stable/stable-queue.git;a=summary

The filename of the patch is:
     exit-put-an-upper-limit-on-how-often-we-can-oops.patch
and it can be found in the queue-5.10 subdirectory.

If you, or anyone else, feels it should not be added to the stable tree,
please let <stable@xxxxxxxxxxxxxxx> know about it.



commit 87f1ce63f3112f820b871a7ccf65d42b5114d1df
Author: Jann Horn <jannh@xxxxxxxxxx>
Date:   Tue Jan 24 11:29:57 2023 -0800

    exit: Put an upper limit on how often we can oops
    
    commit d4ccd54d28d3c8598e2354acc13e28c060961dbb upstream.
    
    Many Linux systems are configured to not panic on oops; but allowing an
    attacker to oops the system **really** often can make even bugs that look
    completely unexploitable exploitable (like NULL dereferences and such) if
    each crash elevates a refcount by one or a lock is taken in read mode, and
    this causes a counter to eventually overflow.
    
    The most interesting counters for this are 32 bits wide (like open-coded
    refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
    platforms is just 16 bits, but probably nobody cares about 32-bit platforms
    that much nowadays.)
    
    So let's panic the system if the kernel is constantly oopsing.
    
    The speed of oopsing 2^32 times probably depends on several factors, like
    how long the stack trace is and which unwinder you're using; an empirically
    important one is whether your console is showing a graphical environment or
    a text console that oopses will be printed to.
    In a quick single-threaded benchmark, it looks like oopsing in a vfork()
    child with a very short stack trace only takes ~510 microseconds per run
    when a graphical console is active; but switching to a text console that
    oopses are printed to slows it down around 87x, to ~45 milliseconds per
    run.
    (Adding more threads makes this faster, but the actual oops printing
    happens under &die_lock on x86, so you can maybe speed this up by a factor
    of around 2 and then any further improvement gets eaten up by lock
    contention.)
    
    It looks like it would take around 8-12 days to overflow a 32-bit counter
    with repeated oopsing on a multi-core X86 system running a graphical
    environment; both me (in an X86 VM) and Seth (with a distro kernel on
    normal hardware in a standard configuration) got numbers in that ballpark.
    
    12 days aren't *that* short on a desktop system, and you'd likely need much
    longer on a typical server system (assuming that people don't run graphical
    desktop environments on their servers), and this is a *very* noisy and
    violent approach to exploiting the kernel; and it also seems to take orders
    of magnitude longer on some machines, probably because stuff like EFI
    pstore will slow it down a ton if that's active.
    
    Signed-off-by: Jann Horn <jannh@xxxxxxxxxx>
    Link: https://lore.kernel.org/r/20221107201317.324457-1-jannh@xxxxxxxxxx
    Reviewed-by: Luis Chamberlain <mcgrof@xxxxxxxxxx>
    Signed-off-by: Kees Cook <keescook@xxxxxxxxxxxx>
    Link: https://lore.kernel.org/r/20221117234328.594699-2-keescook@xxxxxxxxxxxx
    Signed-off-by: Eric Biggers <ebiggers@xxxxxxxxxx>
    Signed-off-by: Sasha Levin <sashal@xxxxxxxxxx>

diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index a4b1ebc2e70b..cd9247b48fc7 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -663,6 +663,14 @@ This is the default behavior.
 an oops event is detected.
 
 
+oops_limit
+==========
+
+Number of kernel oopses after which the kernel should panic when
+``panic_on_oops`` is not set. Setting this to 0 or 1 has the same effect
+as setting ``panic_on_oops=1``.
+
+
 osrelease, ostype & version
 ===========================
 
diff --git a/kernel/exit.c b/kernel/exit.c
index 8d7577940077..db832cff6b7b 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -69,6 +69,33 @@
 #include <asm/unistd.h>
 #include <asm/mmu_context.h>
 
+/*
+ * The default value should be high enough to not crash a system that randomly
+ * crashes its kernel from time to time, but low enough to at least not permit
+ * overflowing 32-bit refcounts or the ldsem writer count.
+ */
+static unsigned int oops_limit = 10000;
+
+#ifdef CONFIG_SYSCTL
+static struct ctl_table kern_exit_table[] = {
+	{
+		.procname       = "oops_limit",
+		.data           = &oops_limit,
+		.maxlen         = sizeof(oops_limit),
+		.mode           = 0644,
+		.proc_handler   = proc_douintvec,
+	},
+	{ }
+};
+
+static __init int kernel_exit_sysctls_init(void)
+{
+	register_sysctl_init("kernel", kern_exit_table);
+	return 0;
+}
+late_initcall(kernel_exit_sysctls_init);
+#endif
+
 static void __unhash_process(struct task_struct *p, bool group_dead)
 {
 	nr_threads--;
@@ -865,10 +892,26 @@ EXPORT_SYMBOL_GPL(do_exit);
 
 void __noreturn make_task_dead(int signr)
 {
+	static atomic_t oops_count = ATOMIC_INIT(0);
+
 	/*
 	 * Take the task off the cpu after something catastrophic has
 	 * happened.
 	 */
+
+	/*
+	 * Every time the system oopses, if the oops happens while a reference
+	 * to an object was held, the reference leaks.
+	 * If the oops doesn't also leak memory, repeated oopsing can cause
+	 * reference counters to wrap around (if they're not using refcount_t).
+	 * This means that repeated oopsing can make unexploitable-looking bugs
+	 * exploitable through repeated oopsing.
+	 * To make sure this can't happen, place an upper bound on how often the
+	 * kernel may oops without panic().
+	 */
+	if (atomic_inc_return(&oops_count) >= READ_ONCE(oops_limit))
+		panic("Oopsed too often (kernel.oops_limit is %d)", oops_limit);
+
 	do_exit(signr);
 }
 



[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]

  Powered by Linux