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Abstract. Starting from summarizing preexisting work and technolo-
gies, this paper introduces the necessary considerations and steps to de-
velop a fully Open Source Virtual Desktop Infrastructure (OSVDI) on
top of OpenStack. Unlike other already available open-source solutions,
a Virtual Desktop Infrastructure (VDI) with access for 3D or video ren-
dering using Graphics Processing Units (GPUs) caters to various use
cases like GPU-accelerated desktop environments, remote visualization,
or large-scale desktop virtualization. Such use cases require the integra-
tion of special-purpose hardware in cloud servers and the sharing of de-
vices as well as resource scheduling, a user interface for session or resource
selection, and efficient remote transport. The envisioned OSVDI is yet
in its infancy growing from previous work to provide efficient large-scale
remote access to existing PC pools in the bwLehrpool service for vari-
ous teaching and learning environments. This preliminary cloud provides
insights and experience to design the necessary (additional) OpenStack
components and configurations.

Keywords: VDI · OpenStack · Desktop Virtualization · Remote Access.

1 Motivation

Like other IT services, the traditional desktop computer and workstations are
getting centralized and cloud-operated as well. This paradigm shift supersedes
decentralized, distributed machine deployment and operation. The advantages
cover flexible provisioning of a wide range of software environments, reduced
administration, better access control, higher security to more efficient and flexible
hardware and software utilization as well as fostering of green IT efforts. Plus, it
caters to the expectations of modern home office schemes offered by an increasing
number of employers.

The modern-day term widely used for this kind of machine operation is Vir-
tual Desktop Infrastructure (VDI). In an abstract and generic view, a VDI is
composed of a set of interlinked components, requiring a (virtual) machine or
compute node with graphic rendering capabilities (software rendering or ded-
icated GPU). For scalable infrastructures, the focus lies on Virtual Machines



2 M. Bentele et al.

(VMs) since they allow the most flexible deployments and allow the implemen-
tation of security designs as well as the separation of different access and data
domains. Further components provide the preprocessing of rendered desktop con-
tent: Grab a framebuffer from a VM, encode it as a video stream, and transport
video streams to the remote (thin) client over the LAN. To host multiple clients,
various management and multiplexing services are required. Finally, modules for
authentication, Quality of Service (QoS) for networks, or stream encryption may
play a role as well, but will not be covered in this paper. Any VDI requires an
interplay of several components and building blocks in hardware and software.
Typically, the commercial vendors bundle those modules and attach a label to it
to market them as a product.1 There is no direct equivalent in the open-source
domain but a range of components that could be combined to achieve similar ob-
jectives are mostly there [17]. Often these approaches lack seamless integration
and ease of setup.

The authors got involved with the VDI topic when developing remote access
to original (emulated) computer environments [19] or when providing remote
access to hundreds of PC pool machines offering a wide range of teaching and
learning software environments provided through the bwLehrpool service [2]. The
latter provides a perfect baseline and playground to discuss and develop ideas for
an OSVDI. Further use cases can profit from an OSVDI. This includes remote
teaching scenarios on standard IT setups, access to high-performance analysis
workstations for graphical workflows in various domains in science, as well as
standard desktop environments in labs and offices. Additionally, the typical re-
mote visualization scenarios in High Performance Computing (HPC) clusters
would profit, where VirtualGL2 lacks appropriate support. A VDI provides a
building block to (re)centralize computer infrastructures and allow a much more
flexible utilization of resources. Further, we got involved in the PePP project,3
promoting the idea of using controlled IT environments in electronic assessments
requiring VDI solutions to host up to several hundred students in parallel.

The paper will be structured as follows. We will provide an updated overview
on existing implementations of GPU virtualization, relevant aspects around re-
mote access protocols, and desktop access including provided interaction and
transport channels. From the summary of the state-of-the-art, we try to identify
all relevant gaps and provide a first outline of the envisioned setup and structure
of the OpenStack VDI extension to be developed.

1 Desktop virtualization is dominated for the time being by Citrix or VMware prod-
ucts [6]. These commercial solutions are seldom attractive for research and education
purposes as they involve proprietary components and come with significant costs.

2 See https://www.virtualgl.org
3 Partnership for innovative E-Assessments – Joint Project of the Baden-Württemberg
Universities, see https://www.hnd-bw.de/projekte/pepp
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2 Related work

The general idea of remote access to desktop environments is nothing new, dat-
ing back to the era of X11/XDM, LTSP, Virtual Network Computing (VNC),
XEN/Citrix, VMware, and the Windows Terminal Server. A couple of different
implementations evolved to provide the graphical output of the desktop over
LAN or WAN connections to the user and user input back to the central in-
frastructure. Depending on the actual protocol, additional channels like uni- or
multi-directional audio, USB redirection, or optical drive access are implemented
as well. Before suggesting further development and improvement of existing com-
ponents, we summarize the state-of-the-art for relevant modules required for an
OSVDI.

2.1 GPU virtualization

Virtualization of GPUs has become mandatory, starting with the evolution of
full machine virtualization to render and obtain a machine’s graphical output.
Nowadays, there are several approaches to virtualize GPUs for VMs as presented
in [23,22,17] and depicted in Fig. 1. All these approaches aim to abstract GPUs
either by emulation of full GPU hardware or by virtualization of GPUs.
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Fig. 1. GPU virtualization approaches.

In the early beginning, the emulation of graphic devices, especially VGA
adapters, evolved to provide virtual GPUs to VMs. Most virtualizer solutions,
like Quick Emulator (QEMU), Virtualbox, or VMware Workstation, provide
legacy support for graphics emulation according to the approach visualized in
Fig. 1a. The graphics emulation is provided by an emulator on the host system
that emulates a framebuffer for graphics rendering. The emulator does not re-
quire access to any physical GPU resulting in increased flexibility and scalability.
However, the low graphics performance through missing GPU acceleration is a
major limitation for graphics-intensive applications [22].

In order to improve the graphics performance, optimizations like paravir-
tualization (Fig. 1b) have been developed [8]. Paravirtualization improves the
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emulation approach by the use of predefined Application Programming Inter-
faces (APIs), which are exposed by the host system. Those APIs provide the
functionality to offload graphic commands from a graphics frontend driver in a
VM to a graphics backend on the host system (which is often referred to as API
forwarding). The computation of graphic commands takes place in the graphics
backend, which itself uses a GPU of the host system for GPU-accelerated ren-
dering. GPU-accelerated rendering increases the overall graphics performance
compared to pure emulation [8], but requires the host system to provide access
to a physical GPU through a suitable graphics driver. This approach does not
allow a VM to acquire a physical GPU directly.

To accelerate graphics performance further, a direct GPU passthrough can
be implemented as shown in Fig. 1c. This approach allows a VM to directly
access a physical GPU using hardware capabilities for direct assignment of I/O
devices, e.g. an I/O Memory Management Unit (IOMMU). These capabilities
provide a hardware-based memory address mapping to map GPU-related device
addresses and interrupts into the memory space of a VM without the need for
any software-based mapping implementation. A major advantage is the fast and
transparent access to the entire GPU. Therefore, a VM is only required to use
the native graphics driver to be able to directly access the physical framebuffer
and rendering capabilities of the GPU. A drawback here is the fact that the
GPU resources (e.g. framebuffer) are entirely and statically assigned to the VM
and cannot be shared with the host system. This limitation can be circumvented
explicitly using dedicated shared memory technologies (e.g. in Looking Glass4).
Nevertheless, results from [3] show that the graphics performance of the direct
GPU passthrough approach accelerates VDI performance and improves user ex-
perience.

A rather novel concept to achieve GPU resource sharing among a host sys-
tem and several VMs while preserving direct access to the GPU is implemented
as gVirt, also known as Intel GVT-g [22]. This approach is often referred to as
mediated GPU passthrough and is visualized in Fig. 1d. Following this approach,
resources of a physical GPU can be partitioned into Virtual GPU (vGPU) in-
stances. Each of these vGPU instances is a fully virtualized GPU providing its
own framebuffer and rendering capabilities. All vGPU instances are managed by
the host system and can be acquired and accessed by any VM or the host system
itself (e.g. to share a framebuffer). A VM has direct access to the physical GPU
resources of its acquired vGPU. The partitioning can either take place temporal
or spatial. Intel GVT-g implements temporal partitioning in a time-shared man-
ner (scheduling), whereas the latest dedicated GPU products (e.g. A100 MIG)
from Nvidia implement spatial partitioning without any scheduling. Both par-
titioning methods increase flexibility, scalability, and efficiency, especially for
graphic workloads that do not fully saturate the entire compute capacity of a
GPU. Besides flexibility, evaluation results for the mediated GPU passthrough
approach show, that GPU workloads achieve almost native performance [22].

4 See https://looking-glass.io
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2.2 Video encoding and decoding

Any graphics output of each VM as part of a VDI is available as a stream of
images in a raw framebuffer format. Without proper preprocessing and com-
pression, such a stream requires an increasingly high network bandwidth on an
increasing resolution during the real-time transport to a remote thin-client (e.g.
3+Gbit/s for Full HD). But network bandwidth is often limited in a WAN,
even in a LAN, especially if the network requirements for a VDI are underes-
timated [16]. Therefore, a preprocessing and adjustable encoding of the frame-
buffer as a compressed video stream is necessary to lower the overall network
throughput per virtual desktop instance while preserving a high display quality
for an acceptable Quality of Experience (QoE).

While the traditional remote transport protocols mainly use variants of JPEG
encoding, this is less suitable to encode fast-changing video or 3D content from
a virtual desktop session [10]. For that purpose, variants of video encoding are
used, most widely the Advanced Video Coding (AVC) [4] and the High Efficiency
Video Coding (HEVC) [5]. AVC, also referred to as H.264 or MPEG-4 Part 10,
is a video compression standard based on block-oriented, motion-compensated
integer-DCT coding. HEVC, also known as H.265 and MPEG-H Part 2, is a video
compression standard designed as part of the MPEG-H project as a successor to
AVC, optimized for high resolutions beyond high definition video formats [20].
Both codecs achieve high compression rates resulting in low network bandwidth.
Like many other codecs, AVC and HEVC can be configured and adjusted by
several parameters. For example, there is a parameter for video quality that
influences the network bandwidth and QoE.

For an OSVDI, it is important that there are free and open-source implemen-
tations of video codecs. The open-source library libavcodec5 implements encoding
and decoding for AVC and HEVC based on the x264 6 and x265 7 software li-
brary. In addition to that, libavcodec contains decoder and sometimes encoder
implementations of several other proprietary codecs, for which no public specifi-
cation has been released. As such, a significant reverse engineering effort is part
of libavcodec development.

Video encoding could be sped up significantly involving specialized hardware,
which can be utilized by libavcodec, too. Most GPUs on the market for the
server-side, as well as the client-side, contain already one or several built-in
video encoder and decoder units. These units perform video encoding or decoding
based on AVC or HEVC without wasting compute capacity of a CPU. If further
video codecs are considered for the development of an OSVDI, the hardware
acceleration for that codec should be checked first on all intended VDI devices.
This scrutiny ensures an efficient video encoding or decoding with a high QoE
even on low-power remote (thin) clients. Alternatively, if hardware acceleration
for a specific codec is missing, an automatic codec selection is conceivable. Such
an automatism preserves compatibility, especially for legacy remote (thin) clients
5 libavcodec is part of the FFmpeg project, http://ffmpeg.org
6 See https://www.videolan.org/developers/x264.html
7 See https://www.videolan.org/developers/x265.html
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as well as flexibility for different type of clients like browser-based or dedicated
remote (thin) clients.

2.3 Remote desktop transport

Transport protocols. Remote desktop transport protocols specify the commu-
nication between a remote (virtual) machine and a (thin) client. Such transport
protocols have in common, that they establish a bi-directional communication for
data exchanges. One direction of the communication is used to transfer graphic
output from a desktop session on a remote (virtual) machine to a (thin) client for
visualization purposes. The second direction is used to transfer user inputs (e.g.
mouse and keyboard events) from a user’s (thin) client to the remote (virtual)
machine. Both directions of the communication allow a seamless remote desktop
interaction while facing the challenge for a low latency to achieve an acceptable
QoE.

Transport protocols for remote desktops can be characterized by their sup-
ported amount of graphics primitives for a transfer to a client. The VNC proto-
col [15] implements the Remote Framebuffer Protocol (RFB) [14]. RFB works at
the framebuffer level and watches for bitmap changes on a (virtual) machine’s
framebuffer. Then, the protocol streams those bitmap updates block by block to
the client. Therefore, RFB uses a single graphics primitive to update bitmaps
on a certain screen location which results in high network bandwidth and poor
video performance [12]. To improve video performance, a VNC setup can be
extended with a VNC proxy accelerator as shown in [21]. The OpenStack cloud
platform contains a built-in VNC implementation called noVNC.8 noVNC pro-
vides a web client for VNC and performs worse than the external Guacamole
VNC implementation [3].

A similar protocol to RFB is the Thin-Client Internet Computing (THINC)
protocol. THINC implements more low level graphic primitives which improves
RFB and results in a better video performance [1], which even outperforms
older Remote Desktop Protocol (RDP) versions. RDP is an proprietary remote
desktop transport protocol from Microsoft and supports a significant number
of high-level graphic primitives including optimizations like caching of already
transferred primitives or support for glyphs. These optimizations offer a high
QoE while preserving low network bandwidth for normal productivity desktop
work [12] compared to VNC [24].

The Simple Protocol for Independent Computing Environments (SPICE)9
is an open-source alternative to the proprietary RDP. Similar to RDP, SPICE
supports high-level graphic primitives and is intended and optimized for remote
access to VMs. Other optimizations include an additional display mode to im-
prove QoE [11] and further interaction features like audio support, folder sharing,
USB redirection, and reduced response time [9].

8 See https://novnc.com
9 See https://www.spice-space.org
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Both protocols, RDP and SPICE, benefit from the transport of high-level
graphic primitives and the rendering of those primitives on the (thin) clients.
However, this is problematic if a user interacts with a graphic-intense applica-
tion but its (thin) client is not equipped with the required rendering capabili-
ties [10,17,13]. In addition to that, both protocols are not very suitable for large
desktop screen areas which change rapidly (e.g. during video playback) [10,7].
Therefore, work in [7] improves the QoE of SPICE by a motion-based JPEG
compression for high-resolution video playbacks while lowering network band-
width.

A completely different approach [18] for optimizing video playbacks is the
detection of video streams within a desktop session. The detected video streams
are directly transferred to the (thin) client. On client-side, those video streams
are decoded and visualized using hardware acceleration. Using this approach,
the network bandwidth is limited drastically during video playback. A similar
concept pushes the detection of video streams one step further and encodes the
entire remote desktop screen with the AVC/H.264 codec as video stream [25].
Compared to VNC, THINC, and RDP, this enhancement achieved the lowest
latency in WAN environments while preserving a high QoE, even for graphic-
intensive multimedia applications. A full remote desktop screen encoding is avail-
able for SPICE, too. It can be enabled using the additional SPICE Streaming
Agent9 which runs in a VM. The agent captures and encodes the entire screen
for a subsequent transport via SPICE. As of the writing of this paper, the agent
based approach is marked as experimental and requires the guest system to be
prepared.

(Thin) clients. The term client refers to a device that allows a user to interact
with a remote (virtual) desktop session. Therefore, a client is equipped with an
application to receive desktop content from a remote (virtual) machine and send
user input back to this machine. Such an application implements one or several
remote desktop transport protocols like VNC, SPICE, or proprietary protocols
(e.g. RDP) and is often realized as a web application (e.g. noVNC) or as a native
(standalone) program (e.g. virt-viewer10 which implements VNC and SPICE).

A client device is mostly a PC optimized for remote interaction, but can be
a laptop, mobile phone, tablet, or single-board computer, too. If such a device
is a low-performance computer, we call this type of client a thin client (e.g. a
low-power tablet). Nowadays, mobile devices are equipped with a web browser.
Therefore, a browser-based solution (web application) supports more client de-
vices, whereas dedicated (thin) clients provide more interactions features, like
USB redirection and multi-directional audio exchange. Nevertheless, most client
devices support hardware-accelerated decoding of video streams (e.g. AVC or
HEVC) and 3D rendering capabilities.

10 See https://virt-manager.org
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2.4 Preliminary work in bwLehrpool

The current pandemic demonstrated the need for adequately scaling online desk-
top solutions and thus pushed the implementation of a remote access for the
bwLehrpool service based on Guacamole/VNC for both remote teaching and
electronic exams. As an ad-hoc solution, the existing computer labs — closed
due to the pandemic — were re-purposed as tiny cloud nodes, hosting one stu-
dent session each. This posed the challenge of adequately assigning resources to
students depending on workload; it could not be done dynamically as is possible
on large servers in a cloud environment, but must be decided beforehand, since
scheduling a student requiring a 3D-intense environment on a small PC with
integrated graphics would lead to a sub-par experience. The solution was to par-
tition the available machines by their specifications, and prompting the student
with a selection screen (see Fig. 2a) when logging into the service, optionally
protecting the more capable systems with a password.

(a) Step 1: PC pool selection. (b) Step 2: VM image selection.

Fig. 2. Central entry point to bwLehrpool remote access through the browser and
consecutive selection of a desired software environment.

Moving parts of the PC lab infrastructure to the cloud offers an expanded
service based on familiar and longer-established environments, but ensures busi-
ness continuity after students return to the labs post-pandemic. Resources can
be provided very quickly on an ad-hoc basis so that the requirements of courses
and the needs of students can be matched more precisely. These developments
allow for ubiquitous teaching in presence and at home. Lecturers could benefit
significantly if computer-based teaching infrastructure could be provided on-
demand and tailored to students at any time, not limited to on-campus PC labs.
Triggered by the increasing demand for high-performance and easy-to-use GPU
resources, the bwGPUL project11 focused on extending the existing bwLehrpool
setup to access General Purpose GPUs (GPGPUs) from within VMs for tools

11 See https://www.bwlehrpool.de/bwgpul. The project focused on the utilization of
existing hardware to avoid too expensive installations of special server hardware.
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that require hardware acceleration in the field of artificial intelligence and ma-
chine learning.

2.5 OpenStack – basis and missing pieces

OpenStack is a free cloud platform, most commonly deployed as Infrastructure-
as-a-Service and licensed under the Apache License 2.0. The platform is com-
posed of several components and services. Each component and service is respon-
sible for a certain set of tasks and provides a RESTful API for communication.
OpenStack’s main focus is to provide an infrastructure for VMs, their storage
and their network. Although, there are many components which expand this
functionality in adjacent areas, like container management or bare-metal com-
putation (see Table 1).

Table 1. Important OpenStack components

Nova Management of VMs Neutron Software Defined Networks
Keystone Authentication Horizon Official dashboard
Cinder Block Storage Glance Base images and metadata

Relevant for our considerations is Nova. It manages the lifecycle (including
scheduling) of the single VMs and therefore uses many APIs of other components.
Nova offers a backend with a common interface to various lower level technologies
(e.g. libvirt with Kernel-based Virtual Machine (KVM) infrastructure, XEN and
Hyper-V) for providing VMs.

An integration of the mediated GPU passthrough technology is part of the
OpenStack platform since version Queens,12 although it’s listed as experimental
until version Train.13 But even in the most up-to-date version, as of this writ-
ing, this module has severe caveats and are only available for the libvirt/KVM
backend of Nova.13 Besides the mediated GPU passthrough support in Open-
Stack, there are other frameworks and tools, such as LibVF.IO,14 available to
orchestrate VMs and vGPU instances. LibVF.IO automates the creation and
configuration of VMs and vGPU instances, but cannot provide any resource
scheduling for cloud computing as OpenStack does.

There are VDI plugins available for OpenStack, such as plugins for Citrix
XenDestop, Microsoft RDS, or Apache Guacamole.15 Most plugins only address
commercial VDI solutions, or in the case of Apache Guacamole, just support the
VNC or RDP transport protocol. Native GPU acceleration and SPICE support
are missing while using these plugins.
12 See https://docs.openstack.org/nova/queens/admin/virtual-gpu.html
13 See https://docs.openstack.org/nova/train/admin/virtual-gpu.html
14 See https://libvf.io
15 See OpenStack Summit – Boston, MA (2017): https://www.openstack.org/videos/

summits/boston-2017/virtual-desktop-infrastructure-vdi-with-openstack
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3 Proposed system architecture

A cloud-based desktop infrastructure is more efficient and flexible than the earlier
presented approach using commodity hardware from (unused) computer labs, as
it allows the assigning and sharing of system resources between multiple VMs.
Only in rare cases, where students require comparatively expensive computing
resources, a more careful approach to resource allocation must be taken, e.g.
for GPGPU tasks that have high Video RAM (VRAM) requirements that could
only be fulfilled by a few expensive, specially equipped cloud nodes. For this
reason, relevant information is pinned as meta-data to the VM in question, and
the student’s session is scheduled to a node depending on its meta-data. In the
first Guacamole-based implementation of the bwLehrpool remote access, this
was simply not possible, as the workflow required the student to first select the
machine type they wanted to use (Fig. 2a), and only then be presented with the
list of available VMs (Fig. 2b), due to technical reasons and time constraints. Our
vision for the next version is to have a public VDI web application where users
log in, select a VM they want to use, and finally be scheduled to an appropriate
cloud node. Additional logic could be added, e.g. limiting or skipping the VM
selection for a student or user group depending on the time of day, day of the
week, etc. This can be useful for conducting cloud-based e-exams, to prevent
students from selecting a wrong VM, and also preventing users not belonging to
the group of examinees from booting into that VM.

Our focus is mainly on the mediated GPU passthrough for further develop-
ment of an OSVDI because this approach combines the flexibility of emulation
and paravirtualization with the performance boost of direct GPU passthrough.
Since an OSVDI is built on open-source software, we use the Linux operating
system on the host system. Linux already provides the mdev subsystem and
tools for mediated devices (vGPUs) and their device drivers. Using this subsys-
tem has the major advantage that the Linux host system can manage all vGPUs
and mediate shared access. This shared access allows the Linux host to access
the framebuffer of a vGPU directly in a read-only manner with low overhead and
latency (e.g. with dma-buf ), which does not work out well with the direct GPU
passthrough approach as part of an OSVDI. The direct access to a framebuffer
of a vGPU means in terms of an OSVDI that the Linux host system can obtain
the graphics output of any VM (virtual desktop) and can control those output
for further processing and transfer to remote (thin) clients.

Access to a VM session can then be implemented via two methods: A browser-
based approach, using modern technologies like WebAssembly, WebUSB and
MediaDevices, resulting in immediate access from a wide range of devices like
laptops, tablets and mobile phones. Still, the alternative approach of using a
dedicated native application the user has to install first can offer even greater
integration with the user’s system, as well as yielding better performance de-
pending on its use case.

We see at least three distinct use cases for an OSVDI in conjunction with
OpenStack supplied through a suitable orchestration framework:
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1. OpenStack user dedicated interactive VM in stateful operation as already
implemented to get started via the dashboard and either using the native
noVNC or some guest system remote access built-in like VNC or RDP.

2. (Large scale) virtual PC pool setups like offered in stateless mode by the
bwLehrpool service with remote access. Users do not have an associated
project or personal VM in OpenStack and thus requiring a dedicated entry
point (Fig. 2a) and the possibility to choose the desired VM (Fig. 2b) kicked-
off from a template. This scenario matches to the objectives of the respective
sub-project in PePP.

3. Special purpose (powerful) virtual workstations offering tools for interactive
image analysis dedicated through a booking system preallocating resources
upon request (no direct relation between OpenStack users and persons re-
quiring such a VM). Those virtual workstations could be offered through a
selection list and mapped into the project concept of OpenStack owned by
the lab requiring such software environments.

The first use case is already available in the standard setup, but the other
two need some consideration regarding scheduling, resource allocation and means
of access. A VDI integration into OpenStack would require to implement two
modules: A service for managing all relevant VDI aspects and a Nova plugin
connecting Nova and the VDI service.

VDI service. Like the other OpenStack services, the VDI service offers a REST-
ful API for inter-service-communication. It’s task is to manage jobs, their require-
ments and the lifecycle of VDI VMs via Nova. This can be broken down further
into different aspects as follows.

Reservations. A common problem in clouds used in teaching is that often VMs
are started once, being used once a week for an hour and idle in the meantime.
As GPUs are a comparable expensive resource, a job based scheduling scheme,
like in HPC, is more efficient. So GPUs can be reused during the idle times by
other jobs.

Priorities. When looking at jobs, there are jobs with user interaction (e.g.
classes), thus having a time dependency and jobs that just have to calculate
some results. The service’s task would be to prioritize the first category over the
second one and make sure all needed resources are available when e.g. classes
start by killing or pausing lower priority VMs and rescheduling them after e.g.
the class has finished.

Job Handling and Registration. The last job of the service would be to handle
the different jobs. Some discussion is needed whether an existing job scheduler
should be included, or whether it should be implemented from scratch. Also,
the service would offer a usable interface for job administration, as well as,
registration and for passing all relevant requirements. This can be extended and
simplified with an user interface, e.g. a dashboard. It does not necessarily need
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to be included into Horizon, because the job based scheduling suggested here is
orthogonal to the normal usage of VMs in OpenStack.

Nova plugin. The second module would be a Nova plugin which connects Nova
and the VDI service during the VM creation process. It’s task is to provide the
service with all relevant metadata and properties as well as to respect (upcoming)
jobs during normal VM scheduling.

4 Work program and planned efforts

For the imagined OSVDI we plan three to five major development cycles and
a minimum viable product approach. In a precursor the existing Guacamole
bwLehrpool remote access should get improved through hardware rendering and
stream encoding deploying the Intel GVT-g desktop graphic architecture to-
gether with the KVM infrastructure as a Linux-based hypervisor and produce an
assessment of ease to use and stability. This will get implemented as an enhanced
bwLehrpool service and prove the capabilities of the existing kernel drivers re-
garding GPU virtualization and hardware partitioning. We will use the SPICE
client and Looking Glass as a prove and performance measure when accessing
the virtual framebuffer for AVC/H.264 encoding and transport. Upon this we
will explore how to encode with low latency, and how to send it to browsers
and display the content there with low latency. This provides a possible baseline
to check certain expectations and features before delivering similar services like
those for an OpenStack cloud.

In a second milestone, we focus on a basic VNC model (leaving further im-
provements of remote access to parallel or later developments) in the cloud in-
cluding orchestration of resources which covers the scope of our contribution to
the PePP project. This milestone starts to extend the OpenStack framework
for missing components and modules. First, we develop concepts for PC pool
scheduling on shared and non-shared hardware resources. Further, this mile-
stone deals with the challenges of a suitable access broker to distribute users
requesting certain types of desktops onto a suitable VM. The access broker in-
cludes the provisioning of basic interaction channels starting from a single PC
pool setup.

While the previous step focused on a basic integration and the outline of
strategic components the next milestone focuses on the special hardware virtu-
alization and integration parts both from the viewpoint of the guest systems and
as encoding devices from the host perspective (Fig. 3). The remote access should
enjoy at least an enhanced hardware-backed video stream transport model for
the remote visual cloud. Later milestones should deal with further remote inter-
action channels and further features and improvements for typical VDI setups
like suspend and resume of interactive desktop sessions.

Starting during the second milestone measures should be taken to form a
sustainable community and financing concept around the proposed service. Both
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Fig. 3. GPU virtualization options and remote transport: Direct GPU passthrough
(left) or mediated GPU passthrough (middle) for Windows guests, where a framebuffer
(virtual desktop) of each Windows guest is encoded as video stream (right), which is
transferred to a remote client using the SPICE protocol.

ongoing support, code maintenance and future development are to be supported
through some stable organizational structure.

5 Conclusion and outlook

This paper intended not only to provide an exhaustive update on technology
development around OSVDI but being at the same time a call for collabora-
tion and feedback from further interested parties.16 Up to now we were able
to progress significantly in our first milestone exploring the foundations of the
envisioned OSVDI. The bwLehrpool remote access including resource allocation
upon demand runs smoothly with good user feedback. Starting into our new
project on enabling large scale e-assessments we hope to run tasks in parallel
to a certain degree to speed up development if resources permit. Certain tasks
can get outsourced, e.g. the programming of well-defined software components,
if additional funding is acquired. With the start of the PePP project we work
on improving the project management wrt. an OSVDI solution by consolidating
the code repository, pushing developments upstream to the benefit of the wider
community including hardware vendors and software developers.

16 See project information and resources at https://github.com/bwLehrpool/osvdi
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As a provider of large scale research infrastructures the computer center
strives to integrate the activities into other evolving infrastructures like the Ger-
man National Research Data Infrastructure (NFDI) and participates in further
grant applications to bolster the efforts. Like in other software projects, we are
standing on the shoulders of giants and depend on developments like hardware
virtualization in the Linux kernel, the SPICE protocol, and OpenStack. 1.5 FTE
working at the endeavor at the moment and are financed for the coming two
years. To gain sustainability, we offer proper support, maintenance of the code
and collaboration with the relevant software projects and hardware vendors.17

On the hardware side, the VDI market strongly evolved around Nvidia hard-
ware [17] which is unfortunately riddled with an incomplete or fragmented open-
source Linux driver support and/or prohibitive software licenses on core features
like GPU partitioning. A future chance stems from the tendency of hardware ven-
dors to create more focused products for computational purposes and gaming
or visualization. If there is e.g. a dedicated adapter just for video encoding this
might simplify setups as no virtualization/partitioning is required.
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