On Wed, Apr 17, 2024 at 04:32:49PM -0700, Song Liu wrote: > On Tue, Apr 16, 2024 at 12:23 AM Mike Rapoport <rppt@xxxxxxxxxx> wrote: > > > > On Mon, Apr 15, 2024 at 06:36:39PM +0100, Mark Rutland wrote: > > > On Mon, Apr 15, 2024 at 09:52:41AM +0200, Peter Zijlstra wrote: > > > > On Thu, Apr 11, 2024 at 07:00:41PM +0300, Mike Rapoport wrote: > > > > > +/** > > > > > + * enum execmem_type - types of executable memory ranges > > > > > + * > > > > > + * There are several subsystems that allocate executable memory. > > > > > + * Architectures define different restrictions on placement, > > > > > + * permissions, alignment and other parameters for memory that can be used > > > > > + * by these subsystems. > > > > > + * Types in this enum identify subsystems that allocate executable memory > > > > > + * and let architectures define parameters for ranges suitable for > > > > > + * allocations by each subsystem. > > > > > + * > > > > > + * @EXECMEM_DEFAULT: default parameters that would be used for types that > > > > > + * are not explcitly defined. > > > > > + * @EXECMEM_MODULE_TEXT: parameters for module text sections > > > > > + * @EXECMEM_KPROBES: parameters for kprobes > > > > > + * @EXECMEM_FTRACE: parameters for ftrace > > > > > + * @EXECMEM_BPF: parameters for BPF > > > > > + * @EXECMEM_TYPE_MAX: > > > > > + */ > > > > > +enum execmem_type { > > > > > + EXECMEM_DEFAULT, > > > > > + EXECMEM_MODULE_TEXT = EXECMEM_DEFAULT, > > > > > + EXECMEM_KPROBES, > > > > > + EXECMEM_FTRACE, > > > > > + EXECMEM_BPF, > > > > > + EXECMEM_TYPE_MAX, > > > > > +}; > > > > > > > > Can we please get a break-down of how all these types are actually > > > > different from one another? > > > > > > > > I'm thinking some platforms have a tiny immediate space (arm64 comes to > > > > mind) and has less strict placement constraints for some of them? > > > > > > Yeah, and really I'd *much* rather deal with that in arch code, as I have said > > > several times. > > > > > > For arm64 we have two bsaic restrictions: > > > > > > 1) Direct branches can go +/-128M > > > We can expand this range by having direct branches go to PLTs, at a > > > performance cost. > > > > > > 2) PREL32 relocations can go +/-2G > > > We cannot expand this further. > > > > > > * We don't need to allocate memory for ftrace. We do not use trampolines. > > > > > > * Kprobes XOL areas don't care about either of those; we don't place any > > > PC-relative instructions in those. Maybe we want to in future. > > > > > > * Modules care about both; we'd *prefer* to place them within +/-128M of all > > > other kernel/module code, but if there's no space we can use PLTs and expand > > > that to +/-2G. Since modules can refreence other modules, that ends up > > > actually being halved, and modules have to fit within some 2G window that > > > also covers the kernel. > > Is +/- 2G enough for all realistic use cases? If so, I guess we don't > really need > EXECMEM_ANYWHERE below? > > > > > > > * I'm not sure about BPF's requirements; it seems happy doing the same as > > > modules. > > > > BPF are happy with vmalloc(). > > > > > So if we *must* use a common execmem allocator, what we'd reall want is our own > > > types, e.g. > > > > > > EXECMEM_ANYWHERE > > > EXECMEM_NOPLT > > > EXECMEM_PREL32 > > > > > > ... and then we use those in arch code to implement module_alloc() and friends. > > > > I'm looking at execmem_types more as definition of the consumers, maybe I > > should have named the enum execmem_consumer at the first place. > > I think looking at execmem_type from consumers' point of view adds > unnecessary complexity. IIUC, for most (if not all) archs, ftrace, kprobe, > and bpf (and maybe also module text) all have the same requirements. > Did I miss something? It's enough to have one architecture with different constrains for kprobes and bpf to warrant a type for each. Where do you see unnecessary complexity? > IOW, we have > > enum execmem_type { > EXECMEM_DEFAULT, > EXECMEM_TEXT, > EXECMEM_KPROBES = EXECMEM_TEXT, > EXECMEM_FTRACE = EXECMEM_TEXT, > EXECMEM_BPF = EXECMEM_TEXT, /* we may end up without > _KPROBE, _FTRACE, _BPF */ > EXECMEM_DATA, /* rw */ > EXECMEM_RO_DATA, > EXECMEM_RO_AFTER_INIT, > EXECMEM_TYPE_MAX, > }; > > Does this make sense? How do you suggest to deal with e.g. riscv that has separate address spaces for modules, kprobes and bpf? > Thanks, > Song -- Sincerely yours, Mike.