Extend the sheaf infrastructure for more efficient kfree_rcu() handling. For caches with sheaves, on each cpu maintain a rcu_free sheaf in addition to main and spare sheaves. kfree_rcu() operations will try to put objects on this sheaf. Once full, the sheaf is detached and submitted to call_rcu() with a handler that will try to put it in the barn, or flush to slab pages using bulk free, when the barn is full. Then a new empty sheaf must be obtained to put more objects there. It's possible that no free sheaves are available to use for a new rcu_free sheaf, and the allocation in kfree_rcu() context can only use GFP_NOWAIT and thus may fail. In that case, fall back to the existing kfree_rcu() machinery. Expected advantages: - batching the kfree_rcu() operations, that could eventually replace the existing batching - sheaves can be reused for allocations via barn instead of being flushed to slabs, which is more efficient - this includes cases where only some cpus are allowed to process rcu callbacks (Android) Possible disadvantage: - objects might be waiting for more than their grace period (it is determined by the last object freed into the sheaf), increasing memory usage - but the existing batching does that too? Only implement this for CONFIG_KVFREE_RCU_BATCHED as the tiny implementation favors smaller memory footprint over performance. Signed-off-by: Vlastimil Babka <vbabka@xxxxxxx> Reviewed-by: Suren Baghdasaryan <surenb@xxxxxxxxxx> --- mm/slab.h | 2 + mm/slab_common.c | 24 ++++++++ mm/slub.c | 165 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 3 files changed, 189 insertions(+), 2 deletions(-) diff --git a/mm/slab.h b/mm/slab.h index 8daaec53b6ecfc44171191d421adb12e5cba2c58..94e9959e1aefa350d3d74e3f5309fde7a5cf2ec8 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -459,6 +459,8 @@ static inline bool is_kmalloc_normal(struct kmem_cache *s) return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT)); } +bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj); + /* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ SLAB_CACHE_DMA32 | SLAB_PANIC | \ diff --git a/mm/slab_common.c b/mm/slab_common.c index ceeefb287899a82f30ad79b403556001c1860311..9496176770ed47491e01ed78e060a74771d5541e 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -1613,6 +1613,27 @@ static void kfree_rcu_work(struct work_struct *work) kvfree_rcu_list(head); } +static bool kfree_rcu_sheaf(void *obj) +{ + struct kmem_cache *s; + struct folio *folio; + struct slab *slab; + + if (is_vmalloc_addr(obj)) + return false; + + folio = virt_to_folio(obj); + if (unlikely(!folio_test_slab(folio))) + return false; + + slab = folio_slab(folio); + s = slab->slab_cache; + if (s->cpu_sheaves) + return __kfree_rcu_sheaf(s, obj); + + return false; +} + static bool need_offload_krc(struct kfree_rcu_cpu *krcp) { @@ -1957,6 +1978,9 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr) if (!head) might_sleep(); + if (kfree_rcu_sheaf(ptr)) + return; + // Queue the object but don't yet schedule the batch. if (debug_rcu_head_queue(ptr)) { // Probable double kfree_rcu(), just leak. diff --git a/mm/slub.c b/mm/slub.c index fa3a6329713a9f45b189f27d4b1b334b54589c38..83f4395267dccfbc144920baa7d0a85a27fbb1b4 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -350,6 +350,8 @@ enum stat_item { ALLOC_FASTPATH, /* Allocation from cpu slab */ ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ FREE_PCS, /* Free to percpu sheaf */ + FREE_RCU_SHEAF, /* Free to rcu_free sheaf */ + FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */ FREE_FASTPATH, /* Free to cpu slab */ FREE_SLOWPATH, /* Freeing not to cpu slab */ FREE_FROZEN, /* Freeing to frozen slab */ @@ -442,6 +444,7 @@ struct slab_sheaf { struct rcu_head rcu_head; struct list_head barn_list; }; + struct kmem_cache *cache; unsigned int size; void *objects[]; }; @@ -450,6 +453,7 @@ struct slub_percpu_sheaves { localtry_lock_t lock; struct slab_sheaf *main; /* never NULL when unlocked */ struct slab_sheaf *spare; /* empty or full, may be NULL */ + struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */ struct node_barn *barn; }; @@ -2461,6 +2465,8 @@ static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp) if (unlikely(!sheaf)) return NULL; + sheaf->cache = s; + stat(s, SHEAF_ALLOC); return sheaf; @@ -2585,6 +2591,24 @@ static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf) sheaf->size = 0; } +static void __rcu_free_sheaf_prepare(struct kmem_cache *s, + struct slab_sheaf *sheaf); + +static void rcu_free_sheaf_nobarn(struct rcu_head *head) +{ + struct slab_sheaf *sheaf; + struct kmem_cache *s; + + sheaf = container_of(head, struct slab_sheaf, rcu_head); + s = sheaf->cache; + + __rcu_free_sheaf_prepare(s, sheaf); + + sheaf_flush_unused(s, sheaf); + + free_empty_sheaf(s, sheaf); +} + /* * Caller needs to make sure migration is disabled in order to fully flush * single cpu's sheaves @@ -2597,7 +2621,7 @@ static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf) static void pcs_flush_all(struct kmem_cache *s) { struct slub_percpu_sheaves *pcs; - struct slab_sheaf *spare; + struct slab_sheaf *spare, *rcu_free; localtry_lock(&s->cpu_sheaves->lock); pcs = this_cpu_ptr(s->cpu_sheaves); @@ -2605,6 +2629,9 @@ static void pcs_flush_all(struct kmem_cache *s) spare = pcs->spare; pcs->spare = NULL; + rcu_free = pcs->rcu_free; + pcs->rcu_free = NULL; + localtry_unlock(&s->cpu_sheaves->lock); if (spare) { @@ -2612,6 +2639,9 @@ static void pcs_flush_all(struct kmem_cache *s) free_empty_sheaf(s, spare); } + if (rcu_free) + call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); + sheaf_flush_main(s); } @@ -2628,6 +2658,11 @@ static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu) free_empty_sheaf(s, pcs->spare); pcs->spare = NULL; } + + if (pcs->rcu_free) { + call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn); + pcs->rcu_free = NULL; + } } static void pcs_destroy(struct kmem_cache *s) @@ -2644,6 +2679,7 @@ static void pcs_destroy(struct kmem_cache *s) continue; WARN_ON(pcs->spare); + WARN_ON(pcs->rcu_free); if (!WARN_ON(pcs->main->size)) { free_empty_sheaf(s, pcs->main); @@ -3707,7 +3743,7 @@ static bool has_pcs_used(int cpu, struct kmem_cache *s) pcs = per_cpu_ptr(s->cpu_sheaves, cpu); - return (pcs->spare || pcs->main->size); + return (pcs->spare || pcs->rcu_free || pcs->main->size); } static void pcs_flush_all(struct kmem_cache *s); @@ -5240,6 +5276,122 @@ bool free_to_pcs(struct kmem_cache *s, void *object) return true; } +static void __rcu_free_sheaf_prepare(struct kmem_cache *s, + struct slab_sheaf *sheaf) +{ + bool init = slab_want_init_on_free(s); + void **p = &sheaf->objects[0]; + unsigned int i = 0; + + while (i < sheaf->size) { + struct slab *slab = virt_to_slab(p[i]); + + memcg_slab_free_hook(s, slab, p + i, 1); + alloc_tagging_slab_free_hook(s, slab, p + i, 1); + + if (unlikely(!slab_free_hook(s, p[i], init, false))) { + p[i] = p[--sheaf->size]; + continue; + } + + i++; + } +} + +static void rcu_free_sheaf(struct rcu_head *head) +{ + struct slab_sheaf *sheaf; + struct node_barn *barn; + struct kmem_cache *s; + + sheaf = container_of(head, struct slab_sheaf, rcu_head); + + s = sheaf->cache; + + __rcu_free_sheaf_prepare(s, sheaf); + + barn = get_node(s, numa_mem_id())->barn; + + /* due to slab_free_hook() */ + if (unlikely(sheaf->size == 0)) + goto empty; + + if (!barn_put_full_sheaf(barn, sheaf, false)) + return; + + sheaf_flush_unused(s, sheaf); + +empty: + if (!barn_put_empty_sheaf(barn, sheaf, false)) + return; + + free_empty_sheaf(s, sheaf); +} + +bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj) +{ + struct slub_percpu_sheaves *pcs; + struct slab_sheaf *rcu_sheaf; + + if (!localtry_trylock(&s->cpu_sheaves->lock)) + goto fail; + + pcs = this_cpu_ptr(s->cpu_sheaves); + + if (unlikely(!pcs->rcu_free)) { + + struct slab_sheaf *empty; + + empty = barn_get_empty_sheaf(pcs->barn); + + if (empty) { + pcs->rcu_free = empty; + goto do_free; + } + + localtry_unlock(&s->cpu_sheaves->lock); + + empty = alloc_empty_sheaf(s, GFP_NOWAIT); + + if (!empty) + goto fail; + + if (!localtry_trylock(&s->cpu_sheaves->lock)) + goto fail; + + pcs = this_cpu_ptr(s->cpu_sheaves); + + if (unlikely(pcs->rcu_free)) + barn_put_empty_sheaf(pcs->barn, empty, true); + else + pcs->rcu_free = empty; + } + +do_free: + + rcu_sheaf = pcs->rcu_free; + + rcu_sheaf->objects[rcu_sheaf->size++] = obj; + + if (likely(rcu_sheaf->size < s->sheaf_capacity)) { + localtry_unlock(&s->cpu_sheaves->lock); + stat(s, FREE_RCU_SHEAF); + return true; + } + + pcs->rcu_free = NULL; + localtry_unlock(&s->cpu_sheaves->lock); + + call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf); + + stat(s, FREE_RCU_SHEAF); + return true; + +fail: + stat(s, FREE_RCU_SHEAF_FAIL); + return false; +} + /* * Bulk free objects to the percpu sheaves. * Unlike free_to_pcs() this includes the calls to all necessary hooks @@ -6569,6 +6721,11 @@ int __kmem_cache_shutdown(struct kmem_cache *s) struct kmem_cache_node *n; flush_all_cpus_locked(s); + + /* we might have rcu sheaves in flight */ + if (s->cpu_sheaves) + rcu_barrier(); + /* Attempt to free all objects */ for_each_kmem_cache_node(s, node, n) { if (n->barn) @@ -7974,6 +8131,8 @@ STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf); STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); STAT_ATTR(FREE_PCS, free_cpu_sheaf); +STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf); +STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail); STAT_ATTR(FREE_FASTPATH, free_fastpath); STAT_ATTR(FREE_SLOWPATH, free_slowpath); STAT_ATTR(FREE_FROZEN, free_frozen); @@ -8069,6 +8228,8 @@ static struct attribute *slab_attrs[] = { &alloc_fastpath_attr.attr, &alloc_slowpath_attr.attr, &free_cpu_sheaf_attr.attr, + &free_rcu_sheaf_attr.attr, + &free_rcu_sheaf_fail_attr.attr, &free_fastpath_attr.attr, &free_slowpath_attr.attr, &free_frozen_attr.attr, -- 2.48.1