Implement timer-based RCU lazy callback batching. The batch is flushed whenever a certain amount of time has passed, or the batch on a particular CPU grows too big. Also memory pressure will flush it in a future patch. To handle several corner cases automagically (such as rcu_barrier() and hotplug), we re-use bypass lists to handle lazy CBs. The bypass list length has the lazy CB length included in it. A separate lazy CB length counter is also introduced to keep track of the number of lazy CBs. Suggested-by: Paul McKenney <paulmck@xxxxxxxxxx> Signed-off-by: Joel Fernandes (Google) <joel@xxxxxxxxxxxxxxxxx> --- include/linux/rcu_segcblist.h | 1 + include/linux/rcupdate.h | 6 ++ kernel/rcu/Kconfig | 8 ++ kernel/rcu/rcu.h | 11 ++ kernel/rcu/rcu_segcblist.c | 15 ++- kernel/rcu/rcu_segcblist.h | 20 +++- kernel/rcu/tree.c | 131 +++++++++++++++--------- kernel/rcu/tree.h | 10 +- kernel/rcu/tree_nocb.h | 185 ++++++++++++++++++++++++++-------- 9 files changed, 290 insertions(+), 97 deletions(-) diff --git a/include/linux/rcu_segcblist.h b/include/linux/rcu_segcblist.h index 659d13a7ddaa..9a992707917b 100644 --- a/include/linux/rcu_segcblist.h +++ b/include/linux/rcu_segcblist.h @@ -22,6 +22,7 @@ struct rcu_cblist { struct rcu_head *head; struct rcu_head **tail; long len; + long lazy_len; }; #define RCU_CBLIST_INITIALIZER(n) { .head = NULL, .tail = &n.head } diff --git a/include/linux/rcupdate.h b/include/linux/rcupdate.h index 1a32036c918c..9191a3d88087 100644 --- a/include/linux/rcupdate.h +++ b/include/linux/rcupdate.h @@ -82,6 +82,12 @@ static inline int rcu_preempt_depth(void) #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ +#ifdef CONFIG_RCU_LAZY +void call_rcu_lazy(struct rcu_head *head, rcu_callback_t func); +#else +#define call_rcu_lazy(head, func) call_rcu(head, func) +#endif + /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active; diff --git a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig index 27aab870ae4c..779b6e84006b 100644 --- a/kernel/rcu/Kconfig +++ b/kernel/rcu/Kconfig @@ -293,4 +293,12 @@ config TASKS_TRACE_RCU_READ_MB Say N here if you hate read-side memory barriers. Take the default if you are unsure. +config RCU_LAZY + bool "RCU callback lazy invocation functionality" + depends on RCU_NOCB_CPU + default n + help + To save power, batch RCU callbacks and flush after delay, memory + pressure or callback list growing too big. + endmenu # "RCU Subsystem" diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h index 4916077119f3..8e7ff7c18072 100644 --- a/kernel/rcu/rcu.h +++ b/kernel/rcu/rcu.h @@ -472,6 +472,16 @@ void do_trace_rcu_torture_read(const char *rcutorturename, unsigned long c_old, unsigned long c); void rcu_gp_set_torture_wait(int duration); +void rcu_force_call_rcu_to_lazy(bool force); + +#if defined(CONFIG_RCU_LAZY) +unsigned long rcu_lazy_get_jiffies_till_flush(void); +void rcu_lazy_set_jiffies_till_flush(unsigned long j); +#else +static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; } +static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { } +#endif + #else static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, unsigned long *gp_seq) @@ -490,6 +500,7 @@ void do_trace_rcu_torture_read(const char *rcutorturename, do { } while (0) #endif static inline void rcu_gp_set_torture_wait(int duration) { } +static inline void rcu_force_call_rcu_to_lazy(bool force) { } #endif #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c index c54ea2b6a36b..776647cd2d6c 100644 --- a/kernel/rcu/rcu_segcblist.c +++ b/kernel/rcu/rcu_segcblist.c @@ -20,16 +20,21 @@ void rcu_cblist_init(struct rcu_cblist *rclp) rclp->head = NULL; rclp->tail = &rclp->head; rclp->len = 0; + rclp->lazy_len = 0; } /* * Enqueue an rcu_head structure onto the specified callback list. */ -void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp) +void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp, + bool lazy) { *rclp->tail = rhp; rclp->tail = &rhp->next; WRITE_ONCE(rclp->len, rclp->len + 1); + + if (IS_ENABLED(CONFIG_RCU_LAZY) && lazy) + WRITE_ONCE(rclp->lazy_len, rclp->lazy_len + 1); } /* @@ -38,11 +43,12 @@ void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp) * element of the second rcu_cblist structure, but ensuring that the second * rcu_cblist structure, if initially non-empty, always appears non-empty * throughout the process. If rdp is NULL, the second rcu_cblist structure - * is instead initialized to empty. + * is instead initialized to empty. Also account for lazy_len for lazy CBs. */ void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp, struct rcu_cblist *srclp, - struct rcu_head *rhp) + struct rcu_head *rhp, + bool lazy) { drclp->head = srclp->head; if (drclp->head) @@ -58,6 +64,9 @@ void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp, srclp->tail = &rhp->next; WRITE_ONCE(srclp->len, 1); } + + if (IS_ENABLED(CONFIG_RCU_LAZY) && rhp && lazy) + WRITE_ONCE(srclp->lazy_len, 1); } /* diff --git a/kernel/rcu/rcu_segcblist.h b/kernel/rcu/rcu_segcblist.h index 431cee212467..8e90b34adb00 100644 --- a/kernel/rcu/rcu_segcblist.h +++ b/kernel/rcu/rcu_segcblist.h @@ -15,14 +15,30 @@ static inline long rcu_cblist_n_cbs(struct rcu_cblist *rclp) return READ_ONCE(rclp->len); } +/* Return number of callbacks in the specified callback list. */ +static inline long rcu_cblist_n_lazy_cbs(struct rcu_cblist *rclp) +{ + if (IS_ENABLED(CONFIG_RCU_LAZY)) + return READ_ONCE(rclp->lazy_len); + return 0; +} + +static inline void rcu_cblist_reset_lazy_len(struct rcu_cblist *rclp) +{ + if (IS_ENABLED(CONFIG_RCU_LAZY)) + WRITE_ONCE(rclp->lazy_len, 0); +} + /* Return number of callbacks in segmented callback list by summing seglen. */ long rcu_segcblist_n_segment_cbs(struct rcu_segcblist *rsclp); void rcu_cblist_init(struct rcu_cblist *rclp); -void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp); +void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp, + bool lazy); void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp, struct rcu_cblist *srclp, - struct rcu_head *rhp); + struct rcu_head *rhp, + bool lazy); struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp); /* diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c index c25ba442044a..cdbdd56e64b1 100644 --- a/kernel/rcu/tree.c +++ b/kernel/rcu/tree.c @@ -3058,47 +3058,8 @@ static void check_cb_ovld(struct rcu_data *rdp) raw_spin_unlock_rcu_node(rnp); } -/** - * call_rcu() - Queue an RCU callback for invocation after a grace period. - * @head: structure to be used for queueing the RCU updates. - * @func: actual callback function to be invoked after the grace period - * - * The callback function will be invoked some time after a full grace - * period elapses, in other words after all pre-existing RCU read-side - * critical sections have completed. However, the callback function - * might well execute concurrently with RCU read-side critical sections - * that started after call_rcu() was invoked. - * - * RCU read-side critical sections are delimited by rcu_read_lock() - * and rcu_read_unlock(), and may be nested. In addition, but only in - * v5.0 and later, regions of code across which interrupts, preemption, - * or softirqs have been disabled also serve as RCU read-side critical - * sections. This includes hardware interrupt handlers, softirq handlers, - * and NMI handlers. - * - * Note that all CPUs must agree that the grace period extended beyond - * all pre-existing RCU read-side critical section. On systems with more - * than one CPU, this means that when "func()" is invoked, each CPU is - * guaranteed to have executed a full memory barrier since the end of its - * last RCU read-side critical section whose beginning preceded the call - * to call_rcu(). It also means that each CPU executing an RCU read-side - * critical section that continues beyond the start of "func()" must have - * executed a memory barrier after the call_rcu() but before the beginning - * of that RCU read-side critical section. Note that these guarantees - * include CPUs that are offline, idle, or executing in user mode, as - * well as CPUs that are executing in the kernel. - * - * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the - * resulting RCU callback function "func()", then both CPU A and CPU B are - * guaranteed to execute a full memory barrier during the time interval - * between the call to call_rcu() and the invocation of "func()" -- even - * if CPU A and CPU B are the same CPU (but again only if the system has - * more than one CPU). - * - * Implementation of these memory-ordering guarantees is described here: - * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. - */ -void call_rcu(struct rcu_head *head, rcu_callback_t func) +static void +__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy) { static atomic_t doublefrees; unsigned long flags; @@ -3139,7 +3100,7 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func) } check_cb_ovld(rdp); - if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) + if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) return; // Enqueued onto ->nocb_bypass, so just leave. // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. rcu_segcblist_enqueue(&rdp->cblist, head); @@ -3161,8 +3122,87 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func) local_irq_restore(flags); } } -EXPORT_SYMBOL_GPL(call_rcu); +#ifdef CONFIG_RCU_LAZY +/** + * call_rcu_lazy() - Lazily queue RCU callback for invocation after grace period. + * @head: structure to be used for queueing the RCU updates. + * @func: actual callback function to be invoked after the grace period + * + * The callback function will be invoked some time after a full grace + * period elapses, in other words after all pre-existing RCU read-side + * critical sections have completed. + * + * Use this API instead of call_rcu() if you don't mind the callback being + * invoked after very long periods of time on systems without memory pressure + * and on systems which are lightly loaded or mostly idle. + * + * Other than the extra delay in callbacks being invoked, this function is + * identical to, and reuses call_rcu()'s logic. Refer to call_rcu() for more + * details about memory ordering and other functionality. + */ +void call_rcu_lazy(struct rcu_head *head, rcu_callback_t func) +{ + return __call_rcu_common(head, func, true); +} +EXPORT_SYMBOL_GPL(call_rcu_lazy); +#endif + +static bool force_call_rcu_to_lazy; + +void rcu_force_call_rcu_to_lazy(bool force) +{ + if (IS_ENABLED(CONFIG_RCU_SCALE_TEST)) + WRITE_ONCE(force_call_rcu_to_lazy, force); +} +EXPORT_SYMBOL_GPL(rcu_force_call_rcu_to_lazy); + +/** + * call_rcu() - Queue an RCU callback for invocation after a grace period. + * @head: structure to be used for queueing the RCU updates. + * @func: actual callback function to be invoked after the grace period + * + * The callback function will be invoked some time after a full grace + * period elapses, in other words after all pre-existing RCU read-side + * critical sections have completed. However, the callback function + * might well execute concurrently with RCU read-side critical sections + * that started after call_rcu() was invoked. + * + * RCU read-side critical sections are delimited by rcu_read_lock() + * and rcu_read_unlock(), and may be nested. In addition, but only in + * v5.0 and later, regions of code across which interrupts, preemption, + * or softirqs have been disabled also serve as RCU read-side critical + * sections. This includes hardware interrupt handlers, softirq handlers, + * and NMI handlers. + * + * Note that all CPUs must agree that the grace period extended beyond + * all pre-existing RCU read-side critical section. On systems with more + * than one CPU, this means that when "func()" is invoked, each CPU is + * guaranteed to have executed a full memory barrier since the end of its + * last RCU read-side critical section whose beginning preceded the call + * to call_rcu(). It also means that each CPU executing an RCU read-side + * critical section that continues beyond the start of "func()" must have + * executed a memory barrier after the call_rcu() but before the beginning + * of that RCU read-side critical section. Note that these guarantees + * include CPUs that are offline, idle, or executing in user mode, as + * well as CPUs that are executing in the kernel. + * + * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the + * resulting RCU callback function "func()", then both CPU A and CPU B are + * guaranteed to execute a full memory barrier during the time interval + * between the call to call_rcu() and the invocation of "func()" -- even + * if CPU A and CPU B are the same CPU (but again only if the system has + * more than one CPU). + * + * Implementation of these memory-ordering guarantees is described here: + * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. + */ +void call_rcu(struct rcu_head *head, rcu_callback_t func) +{ + return __call_rcu_common(head, func, force_call_rcu_to_lazy); + +} +EXPORT_SYMBOL_GPL(call_rcu); /* Maximum number of jiffies to wait before draining a batch. */ #define KFREE_DRAIN_JIFFIES (HZ / 50) @@ -4056,7 +4096,8 @@ static void rcu_barrier_entrain(struct rcu_data *rdp) rdp->barrier_head.func = rcu_barrier_callback; debug_rcu_head_queue(&rdp->barrier_head); rcu_nocb_lock(rdp); - WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); + WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false, + /* wake gp thread */ true)); if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { atomic_inc(&rcu_state.barrier_cpu_count); } else { @@ -4476,7 +4517,7 @@ void rcutree_migrate_callbacks(int cpu) my_rdp = this_cpu_ptr(&rcu_data); my_rnp = my_rdp->mynode; rcu_nocb_lock(my_rdp); /* irqs already disabled. */ - WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); + WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false, false)); raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ /* Leverage recent GPs and set GP for new callbacks. */ needwake = rcu_advance_cbs(my_rnp, rdp) || diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h index 2ccf5845957d..7b1ddee6a159 100644 --- a/kernel/rcu/tree.h +++ b/kernel/rcu/tree.h @@ -267,8 +267,9 @@ struct rcu_data { /* Values for nocb_defer_wakeup field in struct rcu_data. */ #define RCU_NOCB_WAKE_NOT 0 #define RCU_NOCB_WAKE_BYPASS 1 -#define RCU_NOCB_WAKE 2 -#define RCU_NOCB_WAKE_FORCE 3 +#define RCU_NOCB_WAKE_LAZY 2 +#define RCU_NOCB_WAKE 3 +#define RCU_NOCB_WAKE_FORCE 4 #define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500)) /* For jiffies_till_first_fqs and */ @@ -436,9 +437,10 @@ static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp); static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq); static void rcu_init_one_nocb(struct rcu_node *rnp); static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - unsigned long j); + unsigned long j, bool lazy, bool wakegp); static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - bool *was_alldone, unsigned long flags); + bool *was_alldone, unsigned long flags, + bool lazy); static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, unsigned long flags); static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level); diff --git a/kernel/rcu/tree_nocb.h b/kernel/rcu/tree_nocb.h index e369efe94fda..61b1409bd4d6 100644 --- a/kernel/rcu/tree_nocb.h +++ b/kernel/rcu/tree_nocb.h @@ -256,6 +256,31 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force) return __wake_nocb_gp(rdp_gp, rdp, force, flags); } +/* + * LAZY_FLUSH_JIFFIES decides the maximum amount of time that + * can elapse before lazy callbacks are flushed. Lazy callbacks + * could be flushed much earlier for a number of other reasons + * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are + * left unsubmitted to RCU after those many jiffies. + */ +#define LAZY_FLUSH_JIFFIES (10 * HZ) +unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES; + +#ifdef CONFIG_RCU_LAZY +// To be called only from test code. +void rcu_lazy_set_jiffies_till_flush(unsigned long jif) +{ + jiffies_till_flush = jif; +} +EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush); + +unsigned long rcu_lazy_get_jiffies_till_flush(void) +{ + return jiffies_till_flush; +} +EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush); +#endif + /* * Arrange to wake the GP kthread for this NOCB group at some future * time when it is safe to do so. @@ -265,6 +290,7 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, { unsigned long flags; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; + unsigned long mod_jif = 0; raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); @@ -272,16 +298,32 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, * Bypass wakeup overrides previous deferments. In case * of callback storm, no need to wake up too early. */ - if (waketype == RCU_NOCB_WAKE_BYPASS) { - mod_timer(&rdp_gp->nocb_timer, jiffies + 2); - WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); - } else { + switch (waketype) { + case RCU_NOCB_WAKE_LAZY: + if (rdp->nocb_defer_wakeup != RCU_NOCB_WAKE_LAZY) + mod_jif = jiffies_till_flush; + break; + + case RCU_NOCB_WAKE_BYPASS: + mod_jif = 2; + break; + + case RCU_NOCB_WAKE: + case RCU_NOCB_WAKE_FORCE: + // If the type of deferred wake is "stronger" + // than it was before, make it wake up the soonest. if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) - mod_timer(&rdp_gp->nocb_timer, jiffies + 1); - if (rdp_gp->nocb_defer_wakeup < waketype) - WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); + mod_jif = 1; + break; } + if (mod_jif) + mod_timer(&rdp_gp->nocb_timer, jiffies + mod_jif); + + // If new type of wake up is stronger than before, promote. + if (rdp_gp->nocb_defer_wakeup < waketype) + WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); + raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); @@ -296,7 +338,7 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, * Note that this function always returns true if rhp is NULL. */ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - unsigned long j) + unsigned long j, bool lazy) { struct rcu_cblist rcl; @@ -310,7 +352,9 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ if (rhp) rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ - rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); + + /* The lazy CBs are being flushed, but a new one might be enqueued. */ + rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp, lazy); rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); WRITE_ONCE(rdp->nocb_bypass_first, j); rcu_nocb_bypass_unlock(rdp); @@ -326,13 +370,20 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, * Note that this function always returns true if rhp is NULL. */ static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - unsigned long j) + unsigned long j, bool lazy, bool wake_gp) { + bool ret; + if (!rcu_rdp_is_offloaded(rdp)) return true; rcu_lockdep_assert_cblist_protected(rdp); rcu_nocb_bypass_lock(rdp); - return rcu_nocb_do_flush_bypass(rdp, rhp, j); + ret = rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); + + if (wake_gp) + wake_nocb_gp(rdp, true); + + return ret; } /* @@ -345,7 +396,7 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) if (!rcu_rdp_is_offloaded(rdp) || !rcu_nocb_bypass_trylock(rdp)) return; - WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); + WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); } /* @@ -367,12 +418,14 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) * there is only one CPU in operation. */ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - bool *was_alldone, unsigned long flags) + bool *was_alldone, unsigned long flags, + bool lazy) { unsigned long c; unsigned long cur_gp_seq; unsigned long j = jiffies; long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); + long n_lazy_cbs = rcu_cblist_n_lazy_cbs(&rdp->nocb_bypass); lockdep_assert_irqs_disabled(); @@ -414,30 +467,37 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, } WRITE_ONCE(rdp->nocb_nobypass_count, c); - // If there hasn't yet been all that many ->cblist enqueues - // this jiffy, tell the caller to enqueue onto ->cblist. But flush - // ->nocb_bypass first. - if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { + // If caller passed a non-lazy CB and there hasn't yet been all that + // many ->cblist enqueues this jiffy, tell the caller to enqueue it + // onto ->cblist. But flush ->nocb_bypass first. Also do so, if total + // number of CBs (lazy + non-lazy) grows too much. + // + // Note that if the bypass list has lazy CBs, and the main list is + // empty, and rhp happens to be non-lazy, then we end up flushing all + // the lazy CBs to the main list as well. That's the right thing to do, + // since we are kick-starting RCU GP processing anyway for the non-lazy + // one, we can just reuse that GP for the already queued-up lazy ones. + if ((rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) || + (lazy && n_lazy_cbs >= qhimark)) { rcu_nocb_lock(rdp); *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); if (*was_alldone) trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, - TPS("FirstQ")); - WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); + lazy ? TPS("FirstLazyQ") : TPS("FirstQ")); + WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, lazy, false)); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); return false; // Caller must enqueue the callback. } // If ->nocb_bypass has been used too long or is too full, // flush ->nocb_bypass to ->cblist. - if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || - ncbs >= qhimark) { + if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || ncbs >= qhimark) { rcu_nocb_lock(rdp); - if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { + if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy, false)) { *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); if (*was_alldone) trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, - TPS("FirstQ")); + lazy ? TPS("FirstLazyQ") : TPS("FirstQ")); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); return false; // Caller must enqueue the callback. } @@ -455,12 +515,18 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, rcu_nocb_wait_contended(rdp); rcu_nocb_bypass_lock(rdp); ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); + n_lazy_cbs = rcu_cblist_n_lazy_cbs(&rdp->nocb_bypass); rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ - rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); + rcu_cblist_enqueue(&rdp->nocb_bypass, rhp, lazy); + if (!ncbs) { WRITE_ONCE(rdp->nocb_bypass_first, j); - trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); + trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, + lazy ? TPS("FirstLazyBQ") : TPS("FirstBQ")); + } else if (!n_lazy_cbs && lazy) { + trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstLazyBQ")); } + rcu_nocb_bypass_unlock(rdp); smp_mb(); /* Order enqueue before wake. */ if (ncbs) { @@ -493,7 +559,7 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, { unsigned long cur_gp_seq; unsigned long j; - long len; + long len, lazy_len, bypass_len; struct task_struct *t; // If we are being polled or there is no kthread, just leave. @@ -506,9 +572,16 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, } // Need to actually to a wakeup. len = rcu_segcblist_n_cbs(&rdp->cblist); + bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); + lazy_len = rcu_cblist_n_lazy_cbs(&rdp->nocb_bypass); if (was_alldone) { rdp->qlen_last_fqs_check = len; - if (!irqs_disabled_flags(flags)) { + // Only lazy CBs in bypass list + if (lazy_len && bypass_len == lazy_len) { + rcu_nocb_unlock_irqrestore(rdp, flags); + wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, + TPS("WakeLazy")); + } else if (!irqs_disabled_flags(flags)) { /* ... if queue was empty ... */ rcu_nocb_unlock_irqrestore(rdp, flags); wake_nocb_gp(rdp, false); @@ -599,8 +672,8 @@ static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp, */ static void nocb_gp_wait(struct rcu_data *my_rdp) { - bool bypass = false; - long bypass_ncbs; + bool bypass = false, lazy = false; + long bypass_ncbs, lazy_ncbs; int __maybe_unused cpu = my_rdp->cpu; unsigned long cur_gp_seq; unsigned long flags; @@ -636,6 +709,7 @@ static void nocb_gp_wait(struct rcu_data *my_rdp) */ list_for_each_entry_rcu(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp, 1) { bool needwake_state = false; + bool flush_bypass = false; if (!nocb_gp_enabled_cb(rdp)) continue; @@ -648,22 +722,37 @@ static void nocb_gp_wait(struct rcu_data *my_rdp) continue; } bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); - if (bypass_ncbs && + lazy_ncbs = rcu_cblist_n_lazy_cbs(&rdp->nocb_bypass); + + if (lazy_ncbs && + (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) || + bypass_ncbs > 2 * qhimark)) { + flush_bypass = true; + } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || bypass_ncbs > 2 * qhimark)) { - // Bypass full or old, so flush it. - (void)rcu_nocb_try_flush_bypass(rdp, j); - bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); + flush_bypass = true; } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { rcu_nocb_unlock_irqrestore(rdp, flags); if (needwake_state) swake_up_one(&rdp->nocb_state_wq); continue; /* No callbacks here, try next. */ } + + if (flush_bypass) { + // Bypass full or old, so flush it. + (void)rcu_nocb_try_flush_bypass(rdp, j); + bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); + lazy_ncbs = rcu_cblist_n_lazy_cbs(&rdp->nocb_bypass); + } + if (bypass_ncbs) { trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, - TPS("Bypass")); - bypass = true; + bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); + if (bypass_ncbs == lazy_ncbs) + lazy = true; + else + bypass = true; } rnp = rdp->mynode; @@ -713,12 +802,21 @@ static void nocb_gp_wait(struct rcu_data *my_rdp) my_rdp->nocb_gp_gp = needwait_gp; my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; - if (bypass && !rcu_nocb_poll) { - // At least one child with non-empty ->nocb_bypass, so set - // timer in order to avoid stranding its callbacks. - wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, - TPS("WakeBypassIsDeferred")); + // At least one child with non-empty ->nocb_bypass, so set + // timer in order to avoid stranding its callbacks. + if (!rcu_nocb_poll) { + // If bypass list only has lazy CBs. Add a deferred + // lazy wake up. + if (lazy && !bypass) { + wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, + TPS("WakeLazyIsDeferred")); + // Otherwise add a deferred bypass wake up. + } else if (bypass) { + wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, + TPS("WakeBypassIsDeferred")); + } } + if (rcu_nocb_poll) { /* Polling, so trace if first poll in the series. */ if (gotcbs) @@ -999,7 +1097,7 @@ static long rcu_nocb_rdp_deoffload(void *arg) * return false, which means that future calls to rcu_nocb_try_bypass() * will refuse to put anything into the bypass. */ - WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); + WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false, false)); /* * Start with invoking rcu_core() early. This way if the current thread * happens to preempt an ongoing call to rcu_core() in the middle, @@ -1500,13 +1598,14 @@ static void rcu_init_one_nocb(struct rcu_node *rnp) } static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - unsigned long j) + unsigned long j, bool lazy, bool wakegp) { return true; } static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, - bool *was_alldone, unsigned long flags) + bool *was_alldone, unsigned long flags, + bool lazy) { return false; } -- 2.37.0.144.g8ac04bfd2-goog