Purely for performance, I was looking into partitioning some tables round-robin by value. Question is whether there is any way to make use of this in constraint exclusion. Say I have a table foo with serial variable "foo_id". The partition checks are foo_id % 8 = 0 foo_id % 8 = 1 foo_id % 8 = 2 ... If I query on foo_id % 8, explain shows the optimizer using the constraint (1). If I just query on foo_id = 100, the exclusion is not used (2). What would be the best way to feed the optimizer enough data to use the partitioning with equality queries? I've come up with adding a field in the various tables to store the id % 8 values and adding "and a.mod8_field = b.mod8_field" but hopefully there is a better way. That or it might be a useful addition to some later version to handle "serial field % N" in the optimizer. thanx Example 1: explain with foo_id % 8 explain select * from foo where foo_id % 8 = 1; QUERY PLAN ---------------------------------------------------------------------------- Result (cost=0.00..32.60 rows=4 width=164) -> Append (cost=0.00..32.60 rows=4 width=164) -> Seq Scan on foo (cost=0.00..16.30 rows=2 width=164) Filter: ((foo_id % 8) = 1) -> Seq Scan on foo_1 foo (cost=0.00..16.30 rows=2 width=164) Filter: ((foo_id % 8) = 1) (6 rows) explain select * from facts where identifier_id % 8 in ( 1, 3 ); QUERY PLAN ---------------------------------------------------------------------------- Result (cost=0.00..48.90 rows=12 width=164) -> Append (cost=0.00..48.90 rows=12 width=164) -> Seq Scan on facts (cost=0.00..16.30 rows=4 width=164) Filter: ((identifier_id % 8) = ANY ('{1,3}'::integer[])) -> Seq Scan on facts_1 facts (cost=0.00..16.30 rows=4 width=164) Filter: ((identifier_id % 8) = ANY ('{1,3}'::integer[])) -> Seq Scan on facts_3 facts (cost=0.00..16.30 rows=4 width=164) Filter: ((identifier_id % 8) = ANY ('{1,3}'::integer[])) Example 2: explain with foo_id = 1 explain select * from foo where foo_id = 1; QUERY PLAN ---------------------------------------------------------------------------------------------- Result (cost=4.27..131.61 rows=18 width=164) -> Append (cost=4.27..131.61 rows=18 width=164) -> Bitmap Heap Scan on foo (cost=4.27..9.61 rows=2 width=164) Recheck Cond: (foo_id = 1) -> Bitmap Index Scan on foo_foo_id (cost=0.00..4.27 rows=2 width=0) Index Cond: (foo_id = 1) -> Seq Scan on foo_0 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_1 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_2 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_3 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_4 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_5 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_6 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) -> Seq Scan on foo_7 foo (cost=0.00..15.25 rows=2 width=164) Filter: (foo_id = 1) (22 rows) -- Steven Lembark 85-09 90th St. Workhorse Computing Woodhaven, NY, 11421 lembark@xxxxxxxxxxx +1 888 359 3508 -- Sent via pgsql-general mailing list (pgsql-general@xxxxxxxxxxxxxx) To make changes to your subscription: http://www.postgresql.org/mailpref/pgsql-general