Some time ago i found one simple sql over large table eat whole ram+swap and almost killed server (postgresql 8.3.3 on 4gb freebsd server): After some exploring i found what happens: Query was over simple table: profiles=# \d+ counter_vis Table "counter_vis" Column | Type | Modifiers | Description --------------+---------+-----------+------------- counter_id | bigint | not null | visitor_id | bigint | not null | ts | bigint | not null | sessionstart | bigint | not null | sessionend | bigint | not null | numpageviews | integer | not null | Indexes: "counter_vis_counter" btree (counter_id) "counter_vis_vis" btree (visitor_id) Has OIDs: no Which contain around 648M entries. (according fresh analyzed stats from pg_stat_user_tables). Query was: select count(*) from (select visitor_id, sum(numpageviews) as s from counter_vis group by visitor_id having sum(numpageviews)>1) as foo; With plan: QUERY PLAN --------------------------------------------------------------------------------------------------- Aggregate (cost=17429989.40..17429989.41 rows=1 width=0) -> HashAggregate (cost=17422096.40..17426700.65 rows=263100 width=12) Filter: (sum(counter_vis.numpageviews) > 1) -> Seq Scan on counter_vis (cost=0.00..12554826.80 rows=648969280 width=12) Plan look ok... but how query eat over 4gb ram? After lookin i found one strange point: " rows=263100" because i know in table must have around 70M unique visitor_id's. Manual analyze on table do not changed plan. Here is pg_statistic entry after analyze (with default_statistics_target=10): profiles=# SELECT * from pg_statistic where starelid=25488 and staattnum=2 order by 2 asc; -[ RECORD 1 ]------------------------------------------------------------------------------------------------------------------------------------------- starelid | 25488 staattnum | 2 stanullfrac | 0 stawidth | 8 stadistinct | 263100 (!!!! here is 70M distinct values in reality!!!!) stakind1 | 1 stakind2 | 2 stakind3 | 3 stakind4 | 0 staop1 | 410 staop2 | 412 staop3 | 412 staop4 | 0 stanumbers1 | {0.000666667,0.000666667,0.000666667,0.000666667,0.000666667,0.000666667,0.000666667,0.000666667,0.000666667,0.000666667} stanumbers2 | stanumbers3 | {-0.0443004} stanumbers4 | stavalues1 | {413866965,489514660,624858316,753063164,790095243,1279713644,1628857812,2104294292,2726728837,2771123172} stavalues2 | {-9035671468843485583,184524075,555699387,921684844,1329929495,1897558820,2602632340,3083805588,3511488708,3963719633,9173061477162286552} stavalues3 | stavalues4 | so stadistinct is 300 times wrong from reality. Already strange... and i need run that query anyway... so i changed default_statistics_target to 1000 and analyzed table again: profiles=# ANALYZE verbose counter_vis; INFO: analyzing "counter_vis" INFO: "counter_vis": scanned 300000 of 6065134 pages, containing 32100000 live rows and 0 dead rows; 300000 rows in sample, 648969338 estimated total rows ANALYZE After statistic was better: starelid | 25488 staattnum | 2 stanullfrac | 0 stawidth | 8 stadistinct | 7.12958e+06 stakind1 | 1 stakind2 | 2 stakind3 | 3 stakind4 | 0 staop1 | 410 staop2 | 412 staop3 | 412 staop4 | 0 ... long stats skipped... !!!! but stadistinct still 10 times wrong from reality: profiles=# SELECT count(distinct visitor_id) from counter_vis; count ---------- 69573318 (1 row) Any way deal with such situations? Because 10х difference if postgres choose hashed plan will easy kill server because OOM (because query will use 10x more ram then postgres awaited). Probably some strange effects in statdistinc count algoritm? Or just any way remove limits on default_statistics_target? Thanks for help. PS: sorry for bad english. -- Maxim Boguk