Search Postgresql Archives

Re: numeric precision when raising one numeric to another.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Martijn van Oosterhout wrote:
On Thu, May 19, 2005 at 02:25:58PM -0700, Dann Corbit wrote:

Hmmm....
I underestimated.

pow(99999.99999,99999.99999) =


Yeah, a number with x digits raised to the power with something y digits
long could have a length approximating:

x * (10^y) digits

So two numbers both 4 digits long can have a result of upto 40,000
digits. You're only going to be able to them represent exactly for
cases where y is small and integer.

What's a meaningful limit? Do we simply say, you get upto 100 digits
and that's it? Or an extra parameter so you can specify directly?
I believe that even this limit is wrong. Consider sqrt(2), which is 2^(1/2).
2 has 1 digit, 1/2 has 2 digits, but the result is irrational, and therefor cannot be represented with a finit amount of digits.


I believe that there is no mathematically correct way (i.e. a way which guarantees a 100% correct result) to define pow(numeric, numeric) - at least in the general case.

Attachment: smime.p7s
Description: S/MIME Cryptographic Signature


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [Postgresql Jobs]     [Postgresql Admin]     [Postgresql Performance]     [Linux Clusters]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Postgresql & PHP]     [Yosemite]
  Powered by Linux