Hi all
This may be a non-issue, and I don't want to waste your time. But
perhaps someone can have a look to see if there is anything obvious I
have missed.
I am writing a cross-platform accounting app, and I test using Sql
Server on Windows 10 and PostgreSql on Fedora 31. Performance is usually
very similar, with a slight edge to PostgreSql. Now I have a SELECT
which runs over twice as fast on Sql Server compared to PostgreSql.
This is the table definition -
Table "prop.ar_totals"
Column | Type | Collation | Nullable
| Default
-----------------+---------------+-----------+----------+------------------------------------------------
row_id | integer | | not null |
nextval('prop.ar_totals_row_id_seq'::regclass)
created_id | integer | | | 0
deleted_id | integer | | | 0
ledger_row_id | integer | | |
location_row_id | integer | | |
function_row_id | integer | | |
source_code_id | integer | | |
tran_date | date | | |
tran_day | numeric(21,2) | | | 0
tran_tot | numeric(21,2) | | | 0
Indexes:
"ar_totals_pkey" PRIMARY KEY, btree (row_id)
"_ar_totals" UNIQUE, btree (ledger_row_id NULLS FIRST,
location_row_id NULLS FIRST, function_row_id NULLS FIRST, source_code_id
NULLS FIRST, tran_date NULLS FIRST) WHERE deleted_id = 0
"ar_tots_cover" btree (ledger_row_id NULLS FIRST, location_row_id
NULLS FIRST, function_row_id NULLS FIRST, source_code_id NULLS FIRST,
tran_date DESC NULLS LAST, tran_day NULLS FIRST, tran_tot NULLS FIRST)
WHERE deleted_id = 0
This is the SELECT -
SELECT
'2018-03-01' AS op_date, '2018-03-31' AS cl_date,
cl_bal.source_code_id, op_bal.op_tot, cl_bal.cl_tot
FROM (
SELECT a.source_code_id, SUM(a.tran_tot) AS cl_tot FROM (
SELECT source_code_id, tran_tot,
ROW_NUMBER() OVER (PARTITION BY
ledger_row_id, location_row_id, function_row_id, source_code_id
ORDER BY tran_date DESC) row_num
FROM prop.ar_totals WHERE deleted_id = 0 AND tran_date <=
'2018-03-31'
AND ledger_row_id = 1
) AS a
WHERE a.row_num = 1
GROUP BY a.source_code_id
) as cl_bal
LEFT JOIN (
SELECT a.source_code_id, SUM(a.tran_tot) AS op_tot FROM (
SELECT source_code_id, tran_tot,
ROW_NUMBER() OVER (PARTITION BY
ledger_row_id, location_row_id, function_row_id, source_code_id
ORDER BY tran_date DESC) row_num
FROM prop.ar_totals WHERE deleted_id = 0 AND tran_date <
'2018-03-01'
AND ledger_row_id = 1
) AS a
WHERE a.row_num = 1
GROUP BY a.source_code_id
) as op_bal
ON op_bal.source_code_id = cl_bal.source_code_id
This is the EXPLAIN -
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------
Nested Loop Left Join (cost=5.66..5.74 rows=1 width=132)
Join Filter: (a_1.source_code_id = a.source_code_id)
-> GroupAggregate (cost=3.65..3.67 rows=1 width=36)
Group Key: a.source_code_id
-> Sort (cost=3.65..3.65 rows=1 width=10)
Sort Key: a.source_code_id
-> Subquery Scan on a (cost=2.36..3.64 rows=1 width=10)
Filter: (a.row_num = 1)
-> WindowAgg (cost=2.36..3.24 rows=32 width=34)
-> Sort (cost=2.36..2.44 rows=32 width=26)
Sort Key: ar_totals.location_row_id,
ar_totals.function_row_id, ar_totals.source_code_id, ar_totals.tran_date
DESC
-> Seq Scan on ar_totals
(cost=0.00..1.56 rows=32 width=26)
Filter: ((tran_date <=
'2018-03-31'::date) AND (deleted_id = 0) AND (ledger_row_id = 1))
-> GroupAggregate (cost=2.01..2.03 rows=1 width=36)
Group Key: a_1.source_code_id
-> Sort (cost=2.01..2.02 rows=1 width=10)
Sort Key: a_1.source_code_id
-> Subquery Scan on a_1 (cost=1.68..2.00 rows=1 width=10)
Filter: (a_1.row_num = 1)
-> WindowAgg (cost=1.68..1.90 rows=8 width=34)
-> Sort (cost=1.68..1.70 rows=8 width=26)
Sort Key: ar_totals_1.location_row_id,
ar_totals_1.function_row_id, ar_totals_1.source_code_id,
ar_totals_1.tran_date DESC
-> Seq Scan on ar_totals ar_totals_1
(cost=0.00..1.56 rows=8 width=26)
Filter: ((tran_date <
'2018-03-01'::date) AND (deleted_id = 0) AND (ledger_row_id = 1))
(24 rows)
Maybe SQL Server has a way of optimising this, and there is nothing more
I can do. I can live with that. But I just thought I would ask the question.
Thanks for any advice.
Frank Millman