Search Postgresql Archives

Use ctid in where clause in update from statement

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hello,

 

I come from the Oracle world and am trying to convert some queries to PostgreSQL syntax. One of these queries is a MERGE statement, which I converted into an UPDATE SET FROM WHERE construct. In the original query I use the pseudo column ROWID to match a source row with a target row.

This is a simplified version of such a query:

 

MERGE INTO test_large d

     USING (SELECT ROWID, test_large.*

              FROM test_large

             WHERE grp = 1) s

        ON (d.ROWID = s.ROWID)

WHEN MATCHED

THEN

   UPDATE SET d.grp = s.grp;

 

It has the following execution plan:

 

---------------------------------------------------------------------------------------------

| Id  | Operation                      | Name       | Rows  | Bytes | Cost (%CPU)| Time     |

---------------------------------------------------------------------------------------------

|   0 | MERGE STATEMENT                |            |  1000 | 16000 |  2006   (0)| 00:00:25 |

|   1 |  MERGE                         | TEST_LARGE |       |       |            |          |

|   2 |   VIEW                         |            |       |       |            |          |

|   3 |    NESTED LOOPS                |            |  1000 |   220K|  2006   (0)| 00:00:25 |

|   4 |     TABLE ACCESS BY INDEX ROWID| TEST_LARGE |  1000 |   110K|  1006   (0)| 00:00:13 |

|*  5 |      INDEX RANGE SCAN          | IX_TL_GRP  |  1000 |       |     6   (0)| 00:00:01 |

|   6 |     TABLE ACCESS BY USER ROWID | TEST_LARGE |     1 |   113 |     1   (0)| 00:00:01 |

---------------------------------------------------------------------------------------------

 

In the PostgreSQL version I use the column ctid for this. The above query becomes:

 

UPDATE test_large d

   SET grp = s.grp

  FROM (SELECT ctid, test_large.*

          FROM test_large

         WHERE grp = 1) s

 WHERE d.ctid = s.ctid;

 

I noticed that the execution plan for such a statement seems to be suboptimal:

 

Update on test_large d  (cost=155346.98..160367.08 rows=996 width=53)

  ->  Merge Join  (cost=155346.98..160367.08 rows=996 width=53)

        Merge Cond: (d.ctid = test_large.ctid)

        ->  Sort  (cost=154330.57..156833.16 rows=1001033 width=43)

              Sort Key: d.ctid

              ->  Seq Scan on test_large d  (cost=0.00..19366.33 rows=1001033 width=43)

        ->  Sort  (cost=1016.40..1018.89 rows=996 width=10)

              Sort Key: test_large.ctid

              ->  Index Scan using ix_tl_grp on test_large  (cost=0.42..966.80 rows=996 width=10)

                    Index Cond: (grp = 1)

 

I expected a tid scan to be used instead of a Seq scan. I did a VACUUM test_large to make sure statistics are valid.

I would suspect that a tid scan is even a bit faster than accessing via the primary key, since reading the index is not required.

 

I know I could change the WHERE clause to use the primary key, which results in the following plan:

 

Update on test_large d  (cost=0.85..3344.12 rows=995 width=57)

  ->  Nested Loop  (cost=0.85..3344.12 rows=995 width=57)

        ->  Index Scan using ix_tl_grp on test_large  (cost=0.42..994.84 rows=995 width=14)

              Index Cond: (grp = 1)

        ->  Index Scan using pk_test_large on test_large d  (cost=0.42..2.36 rows=1 width=47)

              Index Cond: (id = test_large.id)

 

So my question is more "Is a tid scan not possible / useful for an update" than "how do I accelerate this query".

 

BR

Dirk

 

--
Dirk Mika
Software Developer



mika:timing GmbH
Strundepark - Kürtener Str. 11b
51465 Bergisch Gladbach
Germany

fon +49 2202 2401-1197
dirk.mika@xxxxxxxxxxxxx
www.mikatiming.de

AG Köln HRB 47509 * WEEE-Reg.-Nr. DE 90029884
Geschäftsführer: Harald Mika, Jörg Mika


 


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [Postgresql Jobs]     [Postgresql Admin]     [Postgresql Performance]     [Linux Clusters]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Postgresql & PHP]     [Yosemite]

  Powered by Linux