Search Postgresql Archives

[GENERAL] Significant discrepancy in index cost estimation

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




Hi guys,

I'm loss. I'm running:

=# select version();

                                                 version
----------------------------------------------------------------------------------------------------------
PostgreSQL 9.6.2 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-11), 64-bit

 

=# show work_mem;

work_mem
----------
27MB

 

=# show shared_buffers;

shared_buffers
----------------
3520MB

 

 

Having the tables:

CREATE TABLE mba_test.subscr_param(

    sub_id integer NOT NULL,

    res_id integer NOT NULL,

    rel_status integer,

    status integer,

   and so on.. total 35 columns

   

CREATE TABLE mba_test.subscr (

    sub_id integer NOT NULL,

    sub_name character varying(80),

    status integer NOT NULL,

    acc_id integer,

   and so on.. total 59 columns

  

alter table mba_test.subscr_param add primary key (sub_id, res_id);

alter table mba_test.subscr add primary key (sub_id);

create index idx_subscr_acc_id on mba_test.subscr(acc_id);

 

Tables and indexes has the following sizes / statistics:

=# select relname, relpages, reltuples, pg_size_pretty(pg_relation_size(oid))

     from pg_class

    where relname in ('subscr_param', 'subscr', 'idx_subscr_acc_id', 'subscr_pkey', 'subscr_param_pkey');

       relname         | relpages |  reltuples  | pg_size_pretty

-----------------------+----------+-------------+----------------

subscr                |    24086 |      825305 | 188 MB

subscr_param_pkey     |   115968 | 4.22936e+07 | 906 MB

subscr_param          |  1446158 | 4.22936e+07 | 11 GB

subscr_pkey           |     2265 |      825305 | 18 MB

idx_subscr_acc_id     |     2265 |      825305 | 18 MB

 

And "subscr" data distribution is:

=# select acc_id, count(*) from mba_test.subscr group by acc_id order by count(*) desc limit 5;

  acc_id | count

---------+-------

1089212 |  5232

1000154 |  2884

1587496 |  1896

1409682 |  1746

1249568 |  1149

 

=# select count(*) from mba_test.subscr;

count

--------

825305

 

=# select count(*) from mba_test.subscr_param;

  count

----------

42293572

 

Now, i take the second acc_id (1000154) and run the query below twice (to have cached everything i can). The second execution gives the following:

 

=# explain (analyze, buffers) SELECT "SP".res_id, "SP".sub_id

  FROM mba_test.subscr_param "SP"

  JOIN mba_test.subscr "S" ON "SP".sub_id = "S".sub_id

WHERE "S".acc_id = 1000154;

                                                                     QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------------------------------

Hash Join  (cost=7841.72..2036917.93 rows=138159 width=8) (actual time=39.501..10086.843 rows=86933 loops=1)

   Hash Cond: ("SP".sub_id = "S".sub_id)

   Buffers: shared hit=178674 read=1269448

   ->  Seq Scan on subscr_param "SP"  (cost=0.00..1869093.72 rows=42293572 width=8) (actual time=0.024..6294.100 rows=42293572 loops=1)

         Buffers: shared hit=176710 read=1269448

   ->  Hash  (cost=7808.02..7808.02 rows=2696 width=4) (actual time=3.161..3.161 rows=2884 loops=1)

         Buckets: 4096  Batches: 1  Memory Usage: 134kB

         Buffers: shared hit=1964

         ->  Bitmap Heap Scan on subscr "S"  (cost=53.32..7808.02 rows=2696 width=4) (actual time=0.471..2.802 rows=2884 loops=1)

               Recheck Cond: (acc_id = 1000154)

               Heap Blocks: exact=1953

               Buffers: shared hit=1964

               ->  Bitmap Index Scan on idx_subscr_acc_id  (cost=0.00..52.64 rows=2696 width=0) (actual time=0.273..0.273 rows=2884 loops=1)

                     Index Cond: (acc_id = 1000154)

                     Buffers: shared hit=11

Planning time: 0.155 ms

Execution time: 10091.265 ms

 

Seems strange to decide to seq scan the table with 42 mln rows and size 11GB when having the index (actually, primary key) containing both columns (sub_id and res_id) which is less than 1GB.

 

Now, i've explicitly turned the sec scans off and got perfect execution plan:

 

=# set enable_seqscan = off;

=# explain (analyze, buffers) SELECT "SP".res_id, "SP".sub_id

  FROM mba_test.subscr_param "SP"

  JOIN mba_test.subscr "S" ON "SP".sub_id = "S".sub_id

WHERE "S".acc_id = 1000154;

                                                                           QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Nested Loop  (cost=53.88..4954693.91 rows=138159 width=8) (actual time=0.471..62.315 rows=86933 loops=1)

   Buffers: shared hit=50837

   ->  Bitmap Heap Scan on subscr "S"  (cost=53.32..7808.02 rows=2696 width=4) (actual time=0.459..3.250 rows=2884 loops=1)

         Recheck Cond: (acc_id = 1000154)

         Heap Blocks: exact=1953

         Buffers: shared hit=1964

         ->  Bitmap Index Scan on idx_subscr_acc_id  (cost=0.00..52.64 rows=2696 width=0) (actual time=0.258..0.258 rows=2884 loops=1)

               Index Cond: (acc_id = 1000154)

               Buffers: shared hit=11

   ->  Index Only Scan using subscr_param_pkey on subscr_param "SP"  (cost=0.56..1825.67 rows=923 width=8) (actual time=0.004..0.017 rows=30 loops=2884)

         Index Cond: (sub_id = "S".sub_id)

         Heap Fetches: 86933

         Buffers: shared hit=48873

Planning time: 0.169 ms

Execution time: 66.644 ms

 

67 milliseconds vs 10 seconds! While the cost is two times bigger (4954693 vs 2036917).

My thoughts are: taking into account that the estimated number of rows to fetch on bitmap heap scan is approx. right (est. 2696 - real 2884), the problem is with index scan cost estimation, which results to 4920200 (2696*1825). And the miss in cost estimation is because of the estimation of the number of rows to return (est. 923 - real 30).

 

And my question:

  1. am i right in my hypothesis?
  2. is there a way to affect the cost evaluation in my case to help postgresql choose the right execution plan?
  3. is there a way to fix this query and not to break the execution of other queries?

 

ps: running "analyze" on both tables doesn't affect the result

pps: all "cost" parameters are in their default values: cpu_index_tuple_cost, cpu_operator_cost, cpu_tuple_cost, random_page_cost, seq_page_cost.

 

Thanks, Mikhail




[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [Postgresql Jobs]     [Postgresql Admin]     [Postgresql Performance]     [Linux Clusters]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Postgresql & PHP]     [Yosemite]

  Powered by Linux