"Glen M. Witherington" <glen@xxxxxx> writes: > And here's the query I want to do, efficiently: > SELECT * FROM c > JOIN b ON b.id = c.b_id > JOIN a ON a.id = b.a_id > WHERE a.id = 3 > ORDER BY b.created_at DESC > LIMIT 10 At least for that dummy data, this seems sufficient: regression=# create index on b (a_id, created_at); CREATE INDEX regression=# explain analyze SELECT * FROM c JOIN b ON b.id = c.b_id JOIN a ON a.id = b.a_id WHERE a.id = 3 ORDER BY b.created_at DESC LIMIT 10; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------ Limit (cost=0.14..21.95 rows=10 width=64) (actual time=0.064..1.176 rows=10 loops=1) -> Nested Loop (cost=0.14..436079.81 rows=200000 width=64) (actual time=0.063..1.173 rows=10 loops=1) Join Filter: (b.id = c.b_id) Rows Removed by Join Filter: 1218 -> Nested Loop (cost=0.14..9.81 rows=20 width=40) (actual time=0.035..0.035 rows=1 loops=1) -> Index Scan Backward using b_a_id_created_at_idx on b (cost=0.14..8.49 rows=20 width=24) (actual time=0.019..0.019 rows=1 loops=1) Index Cond: (a_id = 3) -> Materialize (cost=0.00..1.07 rows=1 width=16) (actual time=0.013..0.013 rows=1 loops=1) -> Seq Scan on a (cost=0.00..1.06 rows=1 width=16) (actual time=0.009..0.009 rows=1 loops=1) Filter: (id = 3) Rows Removed by Filter: 2 -> Materialize (cost=0.00..27230.00 rows=1000000 width=24) (actual time=0.008..0.811 rows=1228 loops=1) -> Seq Scan on c (cost=0.00..16370.00 rows=1000000 width=24) (actual time=0.007..0.310 rows=1228 loops=1) Planning time: 0.796 ms Execution time: 1.390 ms (15 rows) regards, tom lane -- Sent via pgsql-general mailing list (pgsql-general@xxxxxxxxxxxxxx) To make changes to your subscription: http://www.postgresql.org/mailpref/pgsql-general