On Thu, Oct 21, 2010 at 8:51 PM, DM <dm.aeqa@xxxxxxxxx> wrote: > Why is the difference in query plan, and the total runtime. Both tables have > the same btree index > > > test=# explain analyze select * from test_seqindex1 where sid='AA023'; > QUERY > PLAN > ------------------------------------------------------------------------------------------------------------------------------------- > Index Scan using test_seqindex1_pkey on test_seqindex1 (cost=0.00..8.27 > rows=1 width=28) (actual time=0.017..0.018 rows=1 loops=1) > Index Cond: ((sid)::text = 'AA023'::text) > Total runtime: 0.035 ms > (3 rows) > > test=# explain analyze select * from test_seqindex2 where sid='AA023'; > QUERY > PLAN > ---------------------------------------------------------------------------------------------------------------------------------- > Bitmap Heap Scan on test_seqindex2 (cost=4.95..275.53 rows=73 width=30) > (actual time=57.833..71.577 rows=2 loops=1) > Recheck Cond: ((sid)::text = 'AA023'::text) > -> Bitmap Index Scan on idx_test_seqindex2_sid (cost=0.00..4.93 rows=73 > width=0) (actual time=34.374..34.374 rows=2 loops=1) > Index Cond: ((sid)::text = 'AA023'::text) > Total runtime: 71.599 ms > (5 rows) > > > test=# \d test_seqindex1 > Table "public.test_seqindex1" > Column | Type | Modifiers > --------+-----------------------+----------- > sid | character varying(13) | not null > name | character varying(80) | > Indexes: > "test_seqindex1_pkey" PRIMARY KEY, btree (sid) > > test=# \d test_seqindex2 > Table "public.test_seqindex2" > Column | Type | Modifiers > --------+-----------------------+----------- > eid | integer | not null > sid | character varying(13) | > ename | character varying(80) | > Indexes: > "test_seqindex2_pkey" PRIMARY KEY, btree (eid) > "idx_test_seqindex2_sid" btree (sid) Index scans are very efficient when they return very few rows. If they return more (like in this case: estimate is 73 rows), the cost goes up linearly (here: 73 times slower). An index does not contain the elements according to their physical location, so it results in a lot of random I/O. Here the planner thinks it's better to do a bitmap index scan (first mark all pages that contain results and then read all these pages sequentially) so to have sequential I/O instead, which is usually faster. If your query really returns 73 rows, it would be a good choice. However, for your case, the estimates are off (73 matches estimated vs 2 matches actual). Therefore the planner needs better statistics on the actual values in your table. Look for "SET STATISTICS" here: http://www.postgresql.org/docs/9.0/static/sql-altertable.html Kind regards, Mathieu -- Sent via pgsql-general mailing list (pgsql-general@xxxxxxxxxxxxxx) To make changes to your subscription: http://www.postgresql.org/mailpref/pgsql-general