Search Postgresql Archives

Re: Efficient Way to Merge Two Large Tables

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi Julian,

Using this way to break up the queries, I am able to update about 1500 rows per minute which will take over 100 days to complete, so I need to figure out why this is slow, and if there is any faster way.

UPDATE table1 SET new_column = table1.new_column FROM table2 WHERE table1.row_id = table2.row_id AND table2.row_id >= $1 AND table2.row_id < $2.

Here is the explain from that:

                                        QUERY PLAN
------------------------------------------------------------------------------------------
 Nested Loop  (cost=0.00..39.78 rows=1 width=121)
   ->  Index Scan using table2_pkey on table2  (cost=0.00..19.88 rows=1 width=12)
         Index Cond: ((row_id >= $1) AND (row_id < $2))
   ->  Index Scan using table1_pkey on table1  (cost=0.00..19.90 rows=1 width=113)
         Index Cond: (table1.row_id = table2.row_id)
(5 rows)


Thanks,
--
Joshua Rubin


On Fri, Jul 16, 2010 at 1:05 PM, Joshua Rubin <jrubin@xxxxxxxxx> wrote:
Hi Julian,

Sorry for the slow response. I think I will need to chop up the query some how, but have not yet found an efficient way to do that. row_id is the primary key in both tables, so that might work. 

Here is the explain:
urls_jrubin_merged=# EXPLAIN UPDATE table1 SET row_id = table2.row_id FROM table2 WHERE table1.row_id = table2.row_id;
                                      QUERY PLAN                                      
--------------------------------------------------------------------------------------
 Merge Join  (cost=57257969.62..12983795937.97 rows=4308749788074 width=121)
   Merge Cond: (table2.row_id = table1.row_id)
   ->  Sort  (cost=15885110.79..16029412.85 rows=288604128 width=8)
         Sort Key: table2.row_id
         ->  Seq Scan on table2  (cost=0.00..2137231.26 rows=288604128 width=8)
   ->  Materialize  (cost=41372858.83..42105903.14 rows=293217725 width=121)
         ->  Sort  (cost=41372858.83..41519467.69 rows=293217725 width=121)
               Sort Key: table1.row_id
               ->  Seq Scan on todo  (cost=0.00..5922587.45 rows=293217725 width=121)
(9 rows)


Thanks,
--
Joshua Rubin



On Tue, Jul 13, 2010 at 5:08 PM, Julian Mehnle <julian@xxxxxxxxxx> wrote:
Joshua Rubin wrote:

> I have two tables each with nearly 300M rows. There is a 1:1
> relationship between the two tables and they are almost always joined
> together in queries. The first table has many columns, the second has
> a foreign key to the primary key of the first table and one more
> column. It is expected that for every row in table1, there is a
> corresponding row in table2. We would like to just add the one column
> to the first table and drop the second table to allow us to index this
> extra column.
>
> This query would work after adding the column to the first table:
> UPDATE table1 SET new_column = table2.new_column FROM table2 WHERE
> table1.row_id = table2.row_id;
>
> However, this will take much too long, I have not successfully
> completed this on our staging server after running it for 3+ days.

Can you get the query plan (EXPLAIN) of the update query?  My guess is the
join cost scales superlinearly.

You might be able to chop this up into smaller UPDATEs by limiting the
rows to be updated in each round by the primary key.

E.g.:

 UPDATE table1 SET new_column = table2.new_column FROM table2
   WHERE
     table1.row_id = table2.row_id and
     table1.row_id >= 0e6 and table1.row_id < 1e6 and
     table2.row_id >= 0e6 and table2.row_id < 1e6;

for a moving row_id window.

This has helped me in the past with a similar scenario (where both tables
were partitioned by the PK, but it would presumably still work in the
unpartitioned case).

-Julian



[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [Postgresql Jobs]     [Postgresql Admin]     [Postgresql Performance]     [Linux Clusters]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Postgresql & PHP]     [Yosemite]
  Powered by Linux