I have begun the slow process of shuffling data from about 125 narrow tables into a single wide table and I am seeking some insight on the 'fastest way.' The narrow tables are all of the following configuration:
=== Table "cal_0800_time" Column | Type | Modifiers -----------+--------------------------+----------- timestamp | timestamp with time zone | value | double precision | Indexes: cal_0805_time__timestamp
Table "cal_5v_dig_rl" Column | Type | Modifiers -----------+--------------------------+----------- timestamp | timestamp with time zone | value | double precision | Indexes: cal_5v_dig_rl__timestamp ===
As it stands, the timestamps are not unique but they should be in the new table. I envision something like:
=== CREATE TABLE app_id_800 ( timestamp timestamp with time zone PRIMARY KEY CHECK (timestamp BETWEEN '2003-08-13 02:10:00 +0' AND now()), cal_5v_dig_rl float, ... ); ===
Followed by:
===
newtelemetry=> EXPLAIN ANALYZE INSERT INTO app_id_800(timestamp) SELECT DISTINCT timestamp FROM cal_0800_time WHERE timestamp BETWEEN '2004-02-21 0:00:00 +0' AND '2004-02-21 12:00:00 +0';NOTICE: QUERY PLAN:
Subquery Scan *SELECT* (cost=0.00..11542.36 rows=1134 width=8) (actual time=0.50..1786.02 rows=36219 loops=1)
-> Unique (cost=0.00..11542.36 rows=1134 width=8) (actual time=0.47..907.77 rows=36219 loops=1)
-> Index Scan using cal_0800_time__timestamp on cal_0800_time (cost=0.00..11514.01 rows=11341 width=8) (actual time=0.46..812.19 rows=37920 loops=1)
Total runtime: 23162.90 msec
EXPLAIN
newtelemetry=> EXPLAIN ANALYZE UPDATE app_id_800 SET cal_ccd_temp = cal_ccd_temp.value FROM cal_ccd_temp WHERE app_id_800.timestamp BETWEEN '2004-02-21 00:00:00 +0' AND '2004-02-21 12:00:00 +0' AND app_id_800.timestamp = cal_ccd_temp.timestamp;
NOTICE: QUERY PLAN:
Nested Loop (cost=0.00..6.89 rows=1 width=538) (actual time=1.34..5215.49 rows=37920 loops=1)
-> Index Scan using app_id_800_pkey on app_id_800 (cost=0.00..3.02 rows=1 width=522) (actual time=0.82..1727.18 rows=36219 loops=1)
-> Index Scan using cal_ccd_temp__timestamp on cal_ccd_temp (cost=0.00..3.86 rows=1 width=16) (actual time=0.04..0.05 rows=1 loops=36219)
Total runtime: 33979.31 msec
EXPLAIN
... 125 more UPDATE app_id_800 SET commands ... ===
The trouble is that this is taking a very long time when the time interval increases. The total time for the one insert and 125 updates (as above) is about 2-4 hrs for 1 day of data (~80K rows).
===
newtelemetry=> EXPLAIN ANALYZE INSERT INTO app_id_800(timestamp) SELECT DISTINCT timestamp FROM cal_0800_time WHERE timestamp BETWEEN '2004-02-21 0:00:00 +0' AND '2004-02-22 00:00:00 +0';
NOTICE: QUERY PLAN:
Subquery Scan *SELECT* (cost=0.00..40791.96 rows=4013 width=8) (actual time=0.89..4397.78 rows=72448 loops=1)
-> Unique (cost=0.00..40791.96 rows=4013 width=8) (actual time=0.85..2614.95 rows=72448 loops=1)
-> Index Scan using cal_0800_time__timestamp on cal_0800_time (cost=0.00..40691.63 rows=40130 width=8) (actual time=0.85..2399.50 rows=101072 loops=1)
Total runtime: 55945.59 msec
EXPLAIN
newtelemetry=> EXPLAIN ANALYZE UPDATE app_id_800 SET cal_ccd_temp = cal_ccd_temp.value FROM cal_ccd_temp WHERE app_id_800.timestamp BETWEEN '2004-02-21 00:00:00 +0' AND '2004-02-22 00:00:00 +0' AND app_id_800.timestamp = cal_ccd_temp.timestamp;
NOTICE: QUERY PLAN:
Nested Loop (cost=0.00..6.89 rows=1 width=538) (actual time=1.08..13235.47 rows=101072 loops=1)
-> Index Scan using app_id_800_pkey on app_id_800 (cost=0.00..3.02 rows=1 width=522) (actual time=0.55..3647.76 rows=72448 loops=1)
-> Index Scan using cal_ccd_temp__timestamp on cal_ccd_temp (cost=0.00..3.86 rows=1 width=16) (actual time=0.05..0.07 rows=1 loops=72448)
Total runtime: 68472.13 msec
EXPLAIN ===
Any ideas on wow can I speed this along? I have 4 months of data an counting :(
Cheers, Randall
---------------------------(end of broadcast)--------------------------- TIP 5: Have you checked our extensive FAQ?
http://www.postgresql.org/docs/faqs/FAQ.html