Hello all, I think I have identified a major performance issue between V11.2 and 13.4 with respect to exception handling in UDFs. I have the following simplified query that pivots data and makes use of a UDF to convert data to a specific type, in
this case, float: select "iccqa_iccassmt_fk" , Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'DEPTH (CM)') ,null) as "iccqa_DEPTH_CM" , Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'LENGTH (CM)') ,null) as "iccqa_LENGTH_CM" , Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'WIDTH (CM)') ,null) as "iccqa_WIDTH_CM" , Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'DRAIN PRESENT') ,null) as "iccqa_DRAIN_PRESENT" , Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'MEASUREMENTS TAKEN') ,null) as "iccqa_MEASUREMENTS_TAKEN" , Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'SIGNS AND SYMPTOMS OF INFECTION') ,null) as "iccqa_SIGNS_AND_SYMPTOMS_OF_INFECTION" from ( -- 'A pivoted view of ICC QA assessments' select VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_iccassmt_fk" as "iccqa_iccassmt_fk" -- The key identifying an ICC assessment. , VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ques_code" as "iccqar_ques_code" -- The question long code from the meta-data. , max(VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ans_val") as "iccqar_ans_val" -- The official answer, if applicable) from the meta-data. from VNAHGEDW_FACTS.AssessmentICCQA_Raw where VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ques_code" in ('DEPTH (CM)', 'LENGTH (CM)', 'WIDTH (CM)' , 'DRAIN PRESENT', 'MEASUREMENTS TAKEN', 'SIGNS AND SYMPTOMS OF INFECTION' ) group by 1, 2 ) T group by 1 ; The UDF is simple as follows: CREATE OR REPLACE FUNCTION TILDA.toFloat(str varchar, val real) RETURNS real AS $$ BEGIN RETURN case when str is null then val else str::real end; EXCEPTION WHEN OTHERS THEN RETURN val; END; $$ LANGUAGE plpgsql COST 1 IMMUTABLE; It works as a coalesce but with a conversion. I think I have identified some large performance difference with the exception handling. It so happens that with the last 3 columns ('DRAIN PRESENT', 'MEASUREMENTS TAKEN' and 'SIGNS AND SYMPTOMS
OF INFECTION'), the data is VERY dirty. There is a mix of 0/1, YES/NO, and other mistyped stuff. This means these 3 columns throw lots of exceptions in the UDF. To illustrate, I simply break this into 2 queries. select "iccqa_iccassmt_fk" , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'DEPTH (CM)') ,null))::real as "iccqa_DEPTH_CM" , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'LENGTH (CM)') ,null))::real as "iccqa_LENGTH_CM" , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'WIDTH (CM)') ,null))::real as "iccqa_WIDTH_CM" -- , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'DRAIN PRESENT') ,null))::real as "iccqa_DRAIN_PRESENT" -- , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'MEASUREMENTS TAKEN') ,null))::real as "iccqa_MEASUREMENTS_TAKEN" -- , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'SIGNS AND SYMPTOMS OF INFECTION') ,null))::real as "iccqa_SIGNS_AND_SYMPTOMS_OF_INFECTION" from ( -- 'A pivoted view of ICC QA assessments' select VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_iccassmt_fk" as "iccqa_iccassmt_fk" -- The key identifying an ICC assessment. , VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ques_code" as "iccqar_ques_code" -- The question long code from the meta-data. , max(VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ans_val") as "iccqar_ans_val" -- The official answer, if applicable) from the meta-data. from VNAHGEDW_FACTS.AssessmentICCQA_Raw where VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ques_code" in ('DEPTH (CM)', 'LENGTH (CM)', 'WIDTH (CM)' , 'DRAIN PRESENT', 'MEASUREMENTS TAKEN', 'SIGNS AND SYMPTOMS OF INFECTION' ) group by 1, 2 ) T group by 1 ; The performance is as expected. HashAggregate (cost=448463.70..448467.20 rows=200 width=16) (actual time=6760.797..9585.397 rows=677899 loops=1) Group Key: assessmenticcqa_raw.iccqar_iccassmt_fk Batches: 1 Memory Usage: 147489kB Buffers: shared hit=158815 -> HashAggregate (cost=405997.87..417322.09 rows=1132422 width=56) (actual time=4576.514..5460.770 rows=2374628 loops=1) Group Key: assessmenticcqa_raw.iccqar_iccassmt_fk, assessmenticcqa_raw.iccqar_ques_code Batches: 1 Memory Usage: 368657kB Buffers: shared hit=158815 -> Seq Scan on assessmenticcqa_raw (cost=0.00..388224.53 rows=2369779 width=38) (actual time=0.033..3298.544 rows=2374628 loops=1) Filter: ((iccqar_ques_code)::text = ANY ('{"DEPTH (CM)","LENGTH (CM)","WIDTH (CM)","DRAIN PRESENT","MEASUREMENTS TAKEN","SIGNS AND SYMPTOMS OF INFECTION"}'::text[])) Rows Removed by Filter: 10734488 Buffers: shared hit=158815 Planning: Buffers: shared hit=3 Planning Time: 0.198 ms Execution Time: 9678.120 ms However, once we switch with the three “bad” columns, the results fall apart. select "iccqa_iccassmt_fk" -- , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'DEPTH (CM)') ,null))::real as "iccqa_DEPTH_CM" -- , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'LENGTH (CM)') ,null))::real as "iccqa_LENGTH_CM" -- , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'WIDTH (CM)') ,null))::real as "iccqa_WIDTH_CM" , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'DRAIN PRESENT') ,null))::real as "iccqa_DRAIN_PRESENT" , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'MEASUREMENTS TAKEN') ,null))::real as "iccqa_MEASUREMENTS_TAKEN" , (Tilda.toFloat(MAX("iccqar_ans_val") filter (where "iccqar_ques_code"= 'SIGNS AND SYMPTOMS OF INFECTION') ,null))::real as "iccqa_SIGNS_AND_SYMPTOMS_OF_INFECTION" from ( -- 'A pivoted view of ICC QA assessments' select VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_iccassmt_fk" as "iccqa_iccassmt_fk" -- The key identifying an ICC assessment. , VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ques_code" as "iccqar_ques_code" -- The question long code from the meta-data. , max(VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ans_val") as "iccqar_ans_val" -- The official answer, if applicable) from the meta-data. from VNAHGEDW_FACTS.AssessmentICCQA_Raw where VNAHGEDW_FACTS.AssessmentICCQA_Raw."iccqar_ques_code" in ('DEPTH (CM)', 'LENGTH (CM)', 'WIDTH (CM)' , 'DRAIN PRESENT', 'MEASUREMENTS TAKEN', 'SIGNS AND SYMPTOMS OF INFECTION' ) group by 1, 2 ) T group by 1 ; The performance falls apart. It is a huge performance difference from ~10s to ~11mn and the only difference that I can think of is that the data is dirty which causes the exception path to be taken. The explain is: HashAggregate (cost=448463.70..448467.20 rows=200 width=16) (actual time=6672.921..696753.080 rows=677899 loops=1) Group Key: assessmenticcqa_raw.iccqar_iccassmt_fk Batches: 1 Memory Usage: 131105kB Buffers: shared hit=158815 -> HashAggregate (cost=405997.87..417322.09 rows=1132422 width=56) (actual time=4574.918..5446.022 rows=2374628 loops=1) Group Key: assessmenticcqa_raw.iccqar_iccassmt_fk, assessmenticcqa_raw.iccqar_ques_code Batches: 1 Memory Usage: 368657kB Buffers: shared hit=158815 -> Seq Scan on assessmenticcqa_raw (cost=0.00..388224.53 rows=2369779 width=38) (actual time=0.032..3300.616 rows=2374628 loops=1) Filter: ((iccqar_ques_code)::text = ANY ('{"DEPTH (CM)","LENGTH (CM)","WIDTH (CM)","DRAIN PRESENT","MEASUREMENTS TAKEN","SIGNS AND SYMPTOMS OF INFECTION"}'::text[])) Rows Removed by Filter: 10734488 Buffers: shared hit=158815 Planning: Buffers: shared hit=3 Planning Time: 0.201 ms Execution Time: 696868.845 ms Now, on V11.2, the explain is: HashAggregate (cost=492171.36..492174.86 rows=200 width=16) (actual time=19322.522..50556.738 rows=743723 loops=1) Group Key: assessmenticcqa_raw.iccqar_iccassmt_fk Buffers: shared hit=11 read=174155 dirtied=13 -> HashAggregate (cost=445458.43..457915.21 rows=1245678 width=56) (actual time=16260.015..17575.088 rows=2601088 loops=1) Group Key: assessmenticcqa_raw.iccqar_iccassmt_fk, assessmenticcqa_raw.iccqar_ques_code Buffers: shared read=174155 dirtied=13 -> Seq Scan on assessmenticcqa_raw (cost=0.00..425803.93 rows=2620600 width=38) (actual time=0.126..14425.239 rows=2601088 loops=1) Filter: ((iccqar_ques_code)::text = ANY ('{"DEPTH (CM)","LENGTH (CM)","WIDTH (CM)","DRAIN PRESENT","MEASUREMENTS TAKEN","SIGNS AND SYMPTOMS OF INFECTION"}'::text[])) Rows Removed by Filter: 11778360 Buffers: shared read=174155 dirtied=13 Planning Time: 36.121 ms Execution Time: 50730.255 ms So, we are seeing two issues:
I’ll be happy to update my test cases and share additional info if needed. Thank you, Laurent Hasson. |