Re: Querying with multicolumn index

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi all,

If anyone still interested in the issue I think I have a very plausible explanation of Eric’s postgresql bad index choice that is: bloated updates_driver_id_time_idx index.

Though it’s possible to fool postgresql planner, as I’ve shown in previous tests, this happens with a very concrete data distribution ~ 100 evenly distributed keys over 15M records and ~ 6M records under one single key, if you play a bit with figures it doesn’t happen anymore.

Eric’s data distribution wasn’t that extreme, as far as I know he had ~ 100K vs 500K distributions … Well, I’ve been able to reproduce the problem with a close data distribution to Erik’s. I made it creating a ‘bloated index’. If optimal index is too big, postgres tries with another suboptimal index, in this case index ’time’. 

See this excerpt of my tests results:

(..)
-- populate table with 99 homogeneus distributed values
INSERT INTO updates SELECT q, q % 99, q, q, to_timestamp(q), q % 99 FROM generate_series(1, 15000000) q;
INSERT 0 15000000
Time: 65686,547 ms
-- populate table with 1 value with 500K rows, simmilar distribution you posted.
INSERT INTO updates SELECT q + 15000000, 100, q, q, to_timestamp(q), -- timestamp will start at 1 at end at 6M
100 FROM generate_series(1, 500000) q;
INSERT 0 500000
Time: 2463,073 ms
-- add constraints and indexes

(…)

-- create 'bloated' driver_id, time index.
CREATE INDEX ON updates (driver_id, "time") WITH (fillfactor = 10);
CREATE INDEX
Time: 41234,091 ms
-- check index sizes, updates_driver_id_idx is huge.
SELECT relname, relpages FROM pg_class WHERE relname LIKE 'updates%';
           relname           | relpages 
-----------------------------+----------
 updates                     |   129167
 updates_driver_id_time_idx  |   576919  
 updates_id_seq              |        1
 updates_pkey                |    42502
 updates_time_idx            |    42502
 updates_vehicle_id_time_idx |    59684
(6 rows)

Time: 16,810 ms
-- check behavior with bloated index
ANALYZE updates;
ANALYZE
Time: 254,917 ms

(..)

Time: 4,635 ms
EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM updates WHERE driver_id = 100 ORDER BY "time" DESC LIMIT 1;
                                                                         QUERY PLAN                                                                         
------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.43..1.91 rows=1 width=36) (actual time=21486.015..21486.015 rows=1 loops=1)
   Buffers: shared hit=39618 read=160454 written=592
   ->  Index Scan Backward using updates_time_idx on updates  (cost=0.43..691283.45 rows=469134 width=36) (actual time=21486.014..21486.014 rows=1 loops=1)
         Filter: (driver_id = 100)
         Rows Removed by Filter: 14500000
         Buffers: shared hit=39618 read=160454 written=592
 Planning time: 0.171 ms
 Execution time: 21486.068 ms
(8 rows)

Time: 21486,905 ms
-- rebuild index with default fillfactor
ALTER INDEX updates_driver_id_time_idx SET (fillfactor = 90);
ALTER INDEX
Time: 0,682 ms
REINDEX INDEX updates_driver_id_time_idx;
REINDEX
Time: 23559,530 ms
-- recheck index sizes, updates_driver_id_idx should look pretty simmilar to others.
SELECT relname, relpages FROM pg_class WHERE relname LIKE 'updates%';
           relname           | relpages 
-----------------------------+----------
 updates                     |   129167
 updates_driver_id_time_idx  |    59684
 updates_id_seq              |        1
 updates_pkey                |    42502
 updates_time_idx            |    42502
 updates_vehicle_id_time_idx |    59684
(6 rows)

Time: 0,452 ms
-- check behavior with regular sized index
EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM updates WHERE driver_id = 100 ORDER BY "time" DESC LIMIT 1;
                                                                          QUERY PLAN                                                                          
--------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.56..1.69 rows=1 width=36) (actual time=0.032..0.033 rows=1 loops=1)
   Buffers: shared hit=2 read=3
   ->  Index Scan Backward using updates_driver_id_time_idx on updates  (cost=0.56..529197.34 rows=469133 width=36) (actual time=0.032..0.032 rows=1 loops=1)
         Index Cond: (driver_id = 100)
         Buffers: shared hit=2 read=3
 Planning time: 0.074 ms
 Execution time: 0.046 ms
(7 rows)

Time: 0,312 ms


@Eric

How to solve the problem:

First of all check if this is the case, check indexes sizes, if you have this problem updates_driver_id_time_idx should be significantly bigger than others.

SELECT relname, relpages FROM pg_class WHERE relname LIKE 'updates%’;

Check index configuration to see if you have different fillfactor configuration

\d+ updates_driver_id_time_idx

If you have setup a different fillfactor, turn it to normal, that is 90%. I don’t see why you should have a low fillfactor, your data doesn’t seem to have frecuent updates, by the contrary, it seems only write and read data.

ALTER INDEX updates_driver_id_time_idx SET (fillfactor = 90)

If your index fillfactor is normal, there is a chance it got bloated, but this is rare. 

Reindex your data.

REINDEX INDEX updates_driver_id_time_idx;

Run tests again.


Regards,

Daniel Blanch.

P.S. Here you have my full tests and output, you might find them useful. Don’t forget to show us index sizes and index configuration, please.


Attachment: test_bad_index_choice_bloated_index.sql
Description: Binary data

Attachment: test_bad_index_choice_bloated_index.out
Description: Binary data



El 11 dic 2016, a las 7:04, Daniel Blanch Bataller <daniel.blanch.bataller@xxxxxxxxx> escribió:

Hi all,

Thomas is absolutely right, the distribution I synthetically made, had 6M records but very old, 9M old, as you can see it had to skip 9M records before finding a suitable record using time index.

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM updates WHERE driver_id = 100 ORDER BY "time" DESC LIMIT 1;
                                                                        QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit  (cost=0.44..0.65 rows=1 width=36) (actual time=3827.807..3827.807 rows=1 loops=1)
  Buffers: shared hit=24592 read=99594 written=659
  ->  Index Scan Backward using updates_time_idx on updates  (cost=0.44..1284780.53 rows=6064800 width=36) (actual time=3827.805..3827.805 rows=1 loops=1)
        Filter: (driver_id = 100)
        Rows Removed by Filter: 9000000
        Buffers: shared hit=24592 read=99594 written=659
Planning time: 0.159 ms
Execution time: 3827.846 ms
(8 rows)


Here you have my tests where I was able to reproduce the problem using default settings on 9.6, 9.5 and 9.3. 9.6 and 9.5 choose the wrong index, while 9.3 didn’t. (update: 9.5 didn’t fail last time)

<test_bad_index_choice.sql><bad_idx_choice.9.6.out><bad_idx_choice.9.5.out><bad_idx_choice.9.3.out>

However when I tried to add more than one value with this strange distribution ~ 30% of distribution to one value the index bad choice problem didn’t happen again in none of the different versions.

I Hope this helps. Regards,

Daniel Blanch.


El 10 dic 2016, a las 21:34, Tomas Vondra <tomas.vondra@xxxxxxxxxxxxxxx> escribió:

Hi,

On 12/10/2016 12:51 AM, Tom Lane wrote:
Eric Jiang <eric@xxxxxxxxxxxxx> writes:
I have a query that I *think* should use a multicolumn index, but
sometimes isn't, resulting in slow queries.

I tried to duplicate this behavior, without success.  Are you running
with nondefault planner parameters?


My guess is this is a case of LIMIT the matching rows are uniformly distributed in the input data. The planner likely concludes that for a driver with a lot of data we'll find the first row using ix_updates_time very quickly, and that it will be cheaper than inspecting the larger multi-column index. But imagine a driver with a lots of data long time ago. That breaks the LIMIT fairly quickly.

regards

--
Tomas Vondra                  http://www.2ndQuadrant.com
PostgreSQL Development, 24x7 Support, Remote DBA, Training & Services


--
Sent via pgsql-performance mailing list (pgsql-performance@xxxxxxxxxxxxxx)
To make changes to your subscription:
http://www.postgresql.org/mailpref/pgsql-performance



[Postgresql General]     [Postgresql PHP]     [PHP Users]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Yosemite]

  Powered by Linux