using zfs,you can tune full page write off for pg,which can save wal write io.
2016年7月29日 2:05 PM,"trafdev" <trafdev@xxxxxxx>写道:
Hi.
I have an OLAP-oriented DB (light occasional bulk writes and heavy aggregated selects over large periods of data) based on Postgres 9.5.3.
Server is a FreeBSD 10.3 with 64GB of RAM and 2x500GB SSD (root on ZFS, mirror).
The largest table is 13GB (with a 4GB index on it), other tables are 4, 2 and less than 1GB.
After reading a lot of articles and "howto-s" I've collected following set of tweaks and hints:
ZFS pools creation:
zfs create zroot/ara/sqldb
zfs create -o recordsize=8k -o primarycache=all zroot/ara/sqldb/pgsql
zfs get primarycache,recordsize,logbias,compression zroot/ara/sqldb/pgsql
NAME PROPERTY VALUE SOURCE
zroot/ara/sqldb/pgsql primarycache all local
zroot/ara/sqldb/pgsql recordsize 8K local
zroot/ara/sqldb/pgsql logbias latency local
zroot/ara/sqldb/pgsql compression lz4 inherited from zroot
L2ARC is disabled
VDEV cache is disabled
pgsql -c "mkdir /ara/sqldb/pgsql/data_ix"
pgsql -c "initdb --locale=en_US.UTF-8 -E UTF-8 -D /ara/sqldb/pgsql/data"
/etc/sysctl.conf
vfs.zfs.metaslab.lba_weighting_enabled=0
postgresql.conf:
listen_addresses = '*'
max_connections = 100
shared_buffers = 16GB
effective_cache_size = 48GB
work_mem = 500MB
maintenance_work_mem = 2GB
min_wal_size = 4GB
max_wal_size = 8GB
checkpoint_completion_target = 0.9
wal_buffers = 16MB
default_statistics_target = 500
random_page_cost = 1
log_lock_waits = on
log_directory = 'pg_log'
log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
log_destination = 'csvlog'
logging_collector = on
log_min_duration_statement = 10000
shared_preload_libraries = 'pg_stat_statements'
track_activity_query_size = 10000
track_io_timing = on
zfs-stats -A
------------------------------------------------------------ ------------
ZFS Subsystem Report Thu Jul 28 21:58:46 2016
------------------------------------------------------------ ------------
ARC Summary: (HEALTHY)
Memory Throttle Count: 0
ARC Misc:
Deleted: 14.92b
Recycle Misses: 7.01m
Mutex Misses: 4.72m
Evict Skips: 1.28b
ARC Size: 53.27% 32.59 GiB
Target Size: (Adaptive) 53.28% 32.60 GiB
Min Size (Hard Limit): 12.50% 7.65 GiB
Max Size (High Water): 8:1 61.18 GiB
ARC Size Breakdown:
Recently Used Cache Size: 92.83% 30.26 GiB
Frequently Used Cache Size: 7.17% 2.34 GiB
ARC Hash Breakdown:
Elements Max: 10.36m
Elements Current: 78.09% 8.09m
Collisions: 9.63b
Chain Max: 26
Chains: 1.49m
------------------------------------------------------------ ------------
zfs-stats -E
------------------------------------------------------------ ------------
ZFS Subsystem Report Thu Jul 28 21:59:57 2016
------------------------------------------------------------ ------------
ARC Efficiency: 49.85b
Cache Hit Ratio: 70.94% 35.36b
Cache Miss Ratio: 29.06% 14.49b
Actual Hit Ratio: 66.32% 33.06b
Data Demand Efficiency: 84.85% 25.39b
Data Prefetch Efficiency: 17.85% 12.90b
CACHE HITS BY CACHE LIST:
Anonymously Used: 4.10% 1.45b
Most Recently Used: 37.82% 13.37b
Most Frequently Used: 55.67% 19.68b
Most Recently Used Ghost: 0.58% 203.42m
Most Frequently Used Ghost: 1.84% 649.83m
CACHE HITS BY DATA TYPE:
Demand Data: 60.92% 21.54b
Prefetch Data: 6.51% 2.30b
Demand Metadata: 32.56% 11.51b
Prefetch Metadata: 0.00% 358.22k
CACHE MISSES BY DATA TYPE:
Demand Data: 26.55% 3.85b
Prefetch Data: 73.13% 10.59b
Demand Metadata: 0.31% 44.95m
Prefetch Metadata: 0.00% 350.48k
zfs-stats -Z
------------------------------------------------------------ ------------
ZFS Subsystem Report Thu Jul 28 22:02:46 2016
------------------------------------------------------------ ------------
File-Level Prefetch: (HEALTHY)
DMU Efficiency: 49.97b
Hit Ratio: 55.85% 27.90b
Miss Ratio: 44.15% 22.06b
Colinear: 22.06b
Hit Ratio: 0.04% 7.93m
Miss Ratio: 99.96% 22.05b
Stride: 17.85b
Hit Ratio: 99.61% 17.78b
Miss Ratio: 0.39% 69.46m
DMU Misc:
Reclaim: 22.05b
Successes: 0.05% 10.53m
Failures: 99.95% 22.04b
Streams: 10.14b
+Resets: 0.10% 9.97m
-Resets: 99.90% 10.13b
Bogus: 0
Notes\concerns:
- primarycache=metadata (recommended in most articles) produces a significant performance degradation (in SELECT queries);
- from what I can see, Postgres uses memory too carefully. I would like somehow to force it to keep accessed data in memory as long as possible. Instead I often see that even frequently accessed data is pushed out of memory cache for no apparent reasons.
Do I miss something important in my configs? Are there any double writes\reads somewhere because of OS\ZFS\Postgres caches? How to avoid them?
Please share your experience\tips. Thanks.
--
Sent via pgsql-performance mailing list (pgsql-performance@postgresql.org )
To make changes to your subscription:
http://www.postgresql.org/mailpref/pgsql-performance