Re: Unexpected expensive index scan

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Herp, forgot to include the query:

SELECT * FROM SyncerEvent WHERE ID > 12468 AND propogatorId NOT IN ('"d8130ab9!-66d0!-4f13!-acec!-a9556362f0ad"') AND conflicted != 1 AND userId = '57dc984f1c87461c0967e228' ORDER BY ID LIMIT 4000;^


On Tue, Sep 27, 2016 at 5:02 PM, Jake Nielsen <jake.k.nielsen@xxxxxxxxx> wrote:
I've got a query that takes a surprisingly long time to run, and I'm having a really rough time trying to figure it out.

Before I get started, here are the specifics of the situation:

Here is the table that I'm working with (apologies for spammy indices, I've been throwing shit at the wall)

                            Table "public.syncerevent"

    Column    |  Type   |                        Modifiers                         

--------------+---------+----------------------------------------------------------

 id           | bigint  | not null default nextval('syncerevent_id_seq'::regclass)

 userid       | text    | 

 event        | text    | 

 eventid      | text    | 

 originatorid | text    | 

 propogatorid | text    | 

 kwargs       | text    | 

 conflicted   | integer | 

Indexes:

    "syncerevent_pkey" PRIMARY KEY, btree (id)

    "syncereventidindex" UNIQUE, btree (eventid)

    "anothersyncereventidindex" btree (userid)

    "anothersyncereventidindexwithascending" btree (userid, id)

    "asdfasdgasdf" btree (userid, id DESC)

    "syncereventuseridhashindex" hash (userid)


To provide some context, as per the wiki, 
there are 3,290,600 rows in this table. 
It gets added to frequently, but never deleted from. 
The "kwargs" column often contains mid-size JSON strings (roughly 30K characters on average)
As of right now, the table has 53 users in it. About 20% of those have a negligible number of events, but the rest of the users have a fairly even smattering.

EXPLAIN (ANALYZE, BUFFERS) says:

                                                                          QUERY PLAN                                                                          

--------------------------------------------------------------------------------------------------------------------------------------------------------------

 Limit  (cost=0.43..1218.57 rows=4000 width=615) (actual time=3352.390..3403.572 rows=4000 loops=1)

   Buffers: shared hit=120244 read=160198

   ->  Index Scan using syncerevent_pkey on syncerevent  (cost=0.43..388147.29 rows=1274560 width=615) (actual time=3352.386..3383.100 rows=4000 loops=1)

         Index Cond: (id > 12468)

         Filter: ((propogatorid <> '"d8130ab9!-66d0!-4f13!-acec!-a9556362f0ad"'::text) AND (conflicted <> 1) AND (userid = '57dc984f1c87461c0967e228'::text))

         Rows Removed by Filter: 1685801

         Buffers: shared hit=120244 read=160198

 Planning time: 0.833 ms

 Execution time: 3407.633 ms

(9 rows)


The postgres verison is: PostgreSQL 9.5.2 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.2 20140120 (Red Hat 4.8.2-16), 64-bit


This query has gotten slower over time.

The postgres server is running on a db.m3.medium RDS instance on Amazon.

(3.75GB of ram)

(~3 GHz processor, single core)

I ran VACUUM, and ANALYZEd this table just prior to running the EXPLAIN command.

Here are the server settings:

 name                                   | current_setting                               | source


 

 application_name                       | psql                                          | client

 archive_command                        | /etc/rds/dbbin/pgscripts/rds_wal_archive %p   | configuration file

 archive_mode                           | on                                            | configuration file

 archive_timeout                        | 5min                                          | configuration file

 autovacuum_analyze_scale_factor        | 0.05                                          | configuration file

 autovacuum_naptime                     | 30s                                           | configuration file

 autovacuum_vacuum_scale_factor         | 0.1                                           | configuration file

 checkpoint_completion_target           | 0.9                                           | configuration file

 client_encoding                        | UTF8                                          | client

 effective_cache_size                   | 1818912kB                                     | configuration file

 fsync                                  | on                                            | configuration file

 full_page_writes                       | on                                            | configuration file

 hot_standby                            | off                                           | configuration file

 listen_addresses                       | *                                             | command line

 lo_compat_privileges                   | off                                           | configuration file

 log_checkpoints                        | on                                            | configuration file

 log_directory                          | /rdsdbdata/log/error

Sorry for the formatting, I'm not sure of the best way to format this data on a mailing list.


If it matters/interests you, here is my underlying confusion:

From some internet sleuthing, I've decided that having a table per user (which would totally make this problem a non-issue) isn't a great idea. Because there is a file per table, having a table per user would not scale. My next thought was partial indexes (which would also totally help), but since there is also a table per index, this really doesn't side-step the problem. My rough mental model says: If there exists a way that a table-per-user scheme would make this more efficient, then there should also exist an index that could achieve the same effect (or close enough to not matter). I would think that "userid = '57dc984f1c87461c0967e228'" could utilize at least one of the two indexes on the userId column, but clearly I'm not understanding something.

Any help in making this query more efficient would be greatly appreciated, and any conceptual insights would be extra awesome.

Thanks for reading.

-Jake



[Postgresql General]     [Postgresql PHP]     [PHP Users]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Yosemite]

  Powered by Linux