Postgres 9.1.2 on Ubuntu 12.04
Any reason why a select by primary key would be slower than a select that includes an ORDER BY? I was really hoping using the primary key would give me a boost.
I stopped the server and cleared the O/S cache using "sync; echo 3 > /proc/sys/vm/drop_caches" between the runs.
test=# VACUUM ANALYZE test_select;
VACUUM
(stopped postgres; reset O/S cache; started postgres)
test=# explain analyze SELECT * FROM test_select WHERE key1 >= 500000 ORDER BY key1, key2, key3, id LIMIT 1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.08 rows=1 width=21) (actual time=12.599..12.600 rows=1 loops=1)
-> Index Scan using my_key on test_select (cost=0.00..41895.49 rows=498724 width=21) (actual time=12.597..12.597 rows=1 loops=1)
Index Cond: (key1 >= 500000)
Total runtime: 12.678 ms
(stopped postgres; reset O/S cache; started postgres)
test=# explain analyze SELECT * FROM test_select WHERE id = 500000;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
Index Scan using test_select_pkey on test_select (cost=0.00..8.36 rows=1 width=21) (actual time=31.396..31.398 rows=1 loops=1)
Index Cond: (id = 500000)
Total runtime: 31.504 ms
Schema:
test=# \d test_select
Table "public.test_select"
Column | Type | Modifiers
--------+--------------+----------------------------------------------------------
id | integer | not null default nextval('test_select_id_seq'::regclass)
key1 | integer |
key2 | integer |
key3 | integer |
data | character(4) |
Indexes:
"test_select_pkey" PRIMARY KEY, btree (id)
"my_key" btree (key1, key2, key3, id)
test=#
Sample data:
test=# SELECT * FROM test_select LIMIT 10;
id | key1 | key2 | key3 | data
----+--------+--------+--------+------
1 | 984966 | 283954 | 772063 | x
2 | 817668 | 393533 | 924888 | x
3 | 751039 | 798753 | 454309 | x
4 | 128505 | 329643 | 280553 | x
5 | 105600 | 257225 | 710015 | x
6 | 323891 | 615614 | 83206 | x
7 | 194054 | 63506 | 353171 | x
8 | 212068 | 881225 | 271804 | x
9 | 644180 | 26693 | 200738 | x
10 | 136586 | 498699 | 554417 | x
(10 rows)
Here's how I populated the table:
import psycopg2
conn = psycopg2.connect('dbname=test')
cur = conn.cursor()
def random_int():
n = 1000000
return random.randint(0,n)
def random_key():
return random_int(), random_int(), random_int()
def create_table():
cur.execute('''
DROP TABLE IF EXISTS test_select;
CREATE TABLE test_select (
id SERIAL PRIMARY KEY,
key1 INTEGER,
key2 INTEGER,
key3 INTEGER,
data char(4)
);
''')
conn.commit()
n = 1000000
for i in range(n):
cur.execute("INSERT INTO test_select(key1, key2, key3, data) VALUES(%s, %s, %s, 'x')", random_key())
conn.commit()
cur.execute('CREATE INDEX my_key ON test_select(key1, key2, key3, id)')
conn.commit()
create_table()