Re: extract(field from timestamp) vs date dimension

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 1/23/07, Tobias Brox <tobias@xxxxxxxxxxxxx> wrote:
Does anyone have experience with using postgres for data warehousing?
Right, I saw one post suggestion to use mysql for a mostly read-only
database ... but anyway, I think it's not a question to change the
database platform for this project, at least not today ;-)

Ralph Kimball seems to be some kind of guru on data warehousing, and
in his books he's strongly recommending to have a date dimension -
simply a table describing all dates in the system, and having
attributes for what day of the week it is, month, day of the month,
week number, bank holiday, anything special, etc.  Well, it does make
sense if adding lots of information there that cannot easily be pulled
out from elsewhere - but as for now, I'm mostly only interessted in
grouping turnover/profit by weeks/months/quarters/years/weekdays.  It
seems so much bloated to store this information, my gut feeling tells it
should be better to generate them on the fly.  Postgres even allows to
create an index on an expression.

The question is ... I'm curious about what would yield the highest
performance - when choosing between:

  select extract(week from created), ...
  from some_table
  where ...
  group by extract(week from created), ...
  sort by extract(week from created), ...

and:

  select date_dim.week_num, ...
  from some_table join date_dim ...
  where ...
  group by date_dim.week_num, ...
  sort by date_dim, week_num, ...

The date_dim table would eventually cover ~3 years of operation, that
is less than 1000 rows.


In my opinion, I would make a date_dim table for this case.  I would
strongly advice against making a date_id field, just use the date
itself as the p-key (i wouldn't bother with RI links to the table
though).

I would also however make a function and use this to make the record:
create or replace function make_date_dim(in_date date) returns
date_dim as $$ [...]

And make date_dim records this way:
insert into date_dim select * from make_dim('01/01/2001'::date);

(or pre-insert with generate_series).
now you get the best of both worlds: you can join to the table for the
general case or index via function for special case indexes.  for
example suppose you had to frequently count an account's sales by
fiscal year quarter irrespective of year:

create index q_sales_idx on account_sale(account_no,
(make_dim(sale_date)).fiscal_quarter);

also you can use the function in place of a join if you want.  In some
cases the join may be better, though.

merlin


[Postgresql General]     [Postgresql PHP]     [PHP Users]     [PHP Home]     [PHP on Windows]     [Kernel Newbies]     [PHP Classes]     [PHP Books]     [PHP Databases]     [Yosemite]

  Powered by Linux