If you can , avoid using DISTINCT and the sorting this invokes
Sent from my iPhone Hello,
Configuration of instance : Type : Amazon Aurora DB instance : db.r4Large Vcpu : 2 ECU : 7 Total Memory : 15.25 GB
Shared buffers are set to 75% of total RAM as per the AWS recommendations and random_page_cost is already altered to 1 and shared the relevant Explain analyze plan for the same.
Thanks Hello,
Below is the explain analyze after setting random_page_cost to 1;
Limit (cost=11638306.20..11638311.56 rows=102 width=209) (actual time=73231.121..73231.122 rows=1 loops=1) -> Unique (cost=11638306.20..11638329.83 rows=450 width=209) (actual time=73231.120..73231.120 rows=1 loops=1) -> Sort (cost=11638306.20..11638307.33 rows=450 width=209) (actual time=73231.120..73231.120 rows=1 loops=1) Sort Key: m.mem_id, m.member_type_id, m.lname, m.fname, m.email, m.addr, m.zip, m.join_date, p.product_desc, b.product_name, c.cln_name, m.member_end_date, (CASE mc2.member_cancel_type_id WHEN '2'::numeric THEN mc2.member_cancel_type_id ELSE mc1.member_cancel_type_id END), m.active_fl, (CASE WHEN (ca.mem_id IS NULL) THEN NULL::integer ELSE 66 END), (CASE WHEN (gmc.mem_id IS NOT NULL) THEN 1 ELSE 0 END), (CASE WHEN (ccpa.mem_id IS NOT NULL) THEN 1 ELSE 0 END), gmc.declassification_start_date, gmc.anonymization_date, gmc.request_source Sort Method: quicksort Memory: 25kB -> Nested Loop Left Join (cost=1.46..11638286.37 rows=450 width=209) (actual time=73231.063..73231.098 rows=1 loops=1) Join Filter: (m.mem_id = ccpa.mem_id) -> Nested Loop Left Join (cost=1.46..11638267.69 rows=450 width=213) (actual time=73231.053..73231.088 rows=1 loops=1) Join Filter: (m.mem_id = gmc.mem_id) -> Nested Loop Left Join (cost=1.46..11637236.72 rows=450 width=167) (actual time=73231.048..73231.083 rows=1 loops=1) -> Nested Loop (cost=1.02..11636127.22 rows=450 width=162) (actual time=73231.037..73231.071 rows=1 loops=1) Join Filter: (s.sol_template_id = st.sol_template_id) Rows Removed by Join Filter: 5565 -> Nested Loop (cost=1.02..11598155.50 rows=515 width=167) (actual time=73228.007..73228.038 rows=1 loops=1) -> Nested Loop Left Join (cost=0.73..11597971.55 rows=515 width=174) (actual time=73227.994..73228.024 rows=1 loops=1) -> Nested Loop Left Join (cost=0.29..11596701.79 rows=515 width=169) (actual time=73227.969..73227.999 rows=1 loops=1) Join Filter: (ca.mem_id = m.mem_id) -> Nested Loop (cost=0.29..11582996.41 rows=515 width=151) (actual time=73227.962..73227.991 rows=1 loops=1) Join Filter: (websites.wbs_client_id = c.cln_client_id) Rows Removed by Join Filter: 2343 -> Seq Scan on clients c (cost=0.00..46.75 rows=2375 width=21) (actual time=0.006..0.184 rows=2344 loops=1) -> Materialize (cost=0.29..11564604.07 rows=515 width=142) (actual time=31.240..31.240 rows=1 loops=2344) -> Nested Loop (cost=0.29..11564601.50 rows=515 width=142) (actual time=73226.808..73226.836 rows=1 loops=1) Join Filter: (campaigns.cam_website_id = websites.wbs_website_id) Rows Removed by Join Filter: 3721 -> Seq Scan on websites (cost=0.00..97.68 rows=3768 width=12) (actual time=0.002..0.350 rows=3722 loops=1) -> Materialize (cost=0.29..11535397.31 rows=515 width=142) (actual time=11.071..19.674 rows=1 loops=3722) -> Nested Loop (cost=0.29..11535394.73 rows=515 width=142) (actual time=41204.676..73224.912 rows=1 loops=1) -> Nested Loop (cost=0.00..11534442.93 rows=515 width=130) (actual time=41204.658..73224.892 rows=1 loops=1) Join Filter: (m.brn_id = b.brn_id) Rows Removed by Join Filter: 202 -> Nested Loop (cost=0.00..11532858.96 rows=515 width=116) (actual time=41204.622..73224.764 rows=1 loops=1) Join Filter: (m.product_id = p.product_id) Rows Removed by Join Filter: 114 -> Seq Scan on member m (cost=0.00..11531974.88 rows=515 width=100) (actual time=41204.577..73224.687 rows=1 loops=1) Filter: ((lower(unaccent_string((lname)::text)) ~~ 'info%'::text) AND (lower(unaccent_string((fname)::text)) ~~ 'travel%'::text)) Rows Removed by Filter: 20595444 -> Materialize (cost=0.00..3.71 rows=114 width=27) (actual time=0.012..0.054 rows=115 loops=1) -> Seq Scan on product p (cost=0.00..3.14 rows=114 width=27) (actual time=0.006..0.021 rows=115 loops=1) -> Materialize (cost=0.00..24.03 rows=202 width=26) (actual time=0.006..0.088 rows=203 loops=1) -> Seq Scan on brand b (cost=0.00..23.02 rows=202 width=26) (actual time=0.002..0.054 rows=203 loops=1) -> Index Scan using pk_campaigns on campaigns (cost=0.29..1.84 rows=1 width=12) (actual time=0.013..0.014 rows=1 loops=1) Index Cond: (cam_campaign_id = m.sol_id) -> Materialize (cost=0.00..36.55 rows=1770 width=18) (actual time=0.007..0.007 rows=0 loops=1) -> Seq Scan on iot_2009_ca_member ca (cost=0.00..27.70 rows=1770 width=18) (actual time=0.002..0.002 rows=0 loops=1) -> Index Scan using pk_member_cancel on member_cancel mc1 (cost=0.44..2.46 rows=1 width=11) (actual time=0.020..0.020 rows=0 loops=1) Index Cond: (m.mem_id = mem_id) Filter: (member_cancel_type_id = '1'::numeric) -> Index Scan using pk_solicitation on solicitation s (cost=0.29..0.35 rows=1 width=11) (actual time=0.009..0.010 rows=1 loops=1) Index Cond: (sol_id = campaigns.cam_campaign_id) -> Materialize (cost=0.00..285.92 rows=4880 width=5) (actual time=0.018..2.349 rows=5566 loops=1) -> Seq Scan on solicitation_template st (cost=0.00..261.52 rows=4880 width=5) (actual time=0.009..1.547 rows=5566 loops=1) Filter: (country_id = ANY ('{1,2,3,121,121,4,5,6,7,8,9,10,11,12,13,14}'::numeric[])) -> Index Scan using pk_member_cancel on member_cancel mc2 (cost=0.44..2.46 rows=1 width=11) (actual time=0.006..0.006 rows=0 loops=1) Index Cond: (m.mem_id = mem_id) Filter: (member_cancel_type_id = '2'::numeric) -> Materialize (cost=0.00..25.59 rows=149 width=46) (actual time=0.004..0.004 rows=0 loops=1) -> Seq Scan on gdpr_member_classification gmc (cost=0.00..24.85 rows=149 width=46) (actual time=0.001..0.001 rows=0 loops=1) Filter: ((declassification_start_date IS NOT NULL) AND (current_fl = 1) AND (date_trunc('day'::text, declassification_start_date) <= to_date('9/17/2020'::text, 'MM/DD/YYYY'::text)) AND ((declassification_end_date IS NULL) OR (date_trunc('day'::text, declassification_end_date) > to_date('9/17/2020'::text, 'MM/DD/YYYY'::text)))) -> Materialize (cost=0.00..10.81 rows=1 width=18) (actual time=0.003..0.003 rows=0 loops=1) -> Seq Scan on ccpa_member_classification ccpa (cost=0.00..10.80 rows=1 width=18) (actual time=0.003..0.003 rows=0 loops=1) Filter: ((anonymization_date IS NOT NULL) AND (current_fl = 1) AND (date_trunc('day'::text, anonymization_date) <= to_date('9/17/2020'::text, 'MM/DD/YYYY'::text))) Planning time: 7.622 ms Execution time: 73231.463 ms
Also I have tried to add a GIN index for better text search as below,
CREATE INDEX idx_fnmae_lname_gin_composite ON wldbowner.member USING gin (lower((((fname)::text || ' '::text) || (lname)::text)) rdsadmin.gin_trgm_ops);
Thanks
Hello,
show seq_page_cost; 1
show random_page_cost; 4
Set this to 1 and rerun the explain analyze and let us know what you see. You are using an SSD and the value of 4 should not be apt. storage type : SSD
Table size : 39 GB
There are no columns added, also I haven't found anything where we need to update the data for older rows.
Thanks
Hello all,
I am facing issues with one of the queries running on Amazon Aurora (PG VERSION 9.6) which is taking more than a minute to complete. As per the initial investigation I assume that one part of the query is taking a sequential scan on a table("wldbowner.member") which is consuming most of the execution time. I tried to use index (Btree and GIN ) as well but none of them were helping to get the query to run faster. Attached is the query along with the explain analyze of the same, any help on the same would be appreciated.
NOTE : I have done the vacuum on the table already to get rid of bloat issues. Reindex and test with more work mem is also helping.
Just wanted to clarify one thing before looking at the query.
What is random_page_cost set to ?
|