On Sun, 2006-02-26 at 07:04 +0530, Abu M. Muttalib wrote: > Hi Arjan, > > Thanks for your reply. > > I have created a standalone device and a device driver for it. scullc, to be > specific, from ldd3 source code. Anyways I am sending you the source code as > attachment. This is compilable standalone. You need to do an insmod as > follows: I fixed a few compiler warnings (which showed real bugs) in your code, and now I can't reproduce the oops at all I have attached the updated main.c to this email
/* -*- C -*- * main.c -- the bare scullc char module * * Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet * Copyright (C) 2001 O'Reilly & Associates * * The source code in this file can be freely used, adapted, * and redistributed in source or binary form, so long as an * acknowledgment appears in derived source files. The citation * should list that the code comes from the book "Linux Device * Drivers" by Alessandro Rubini and Jonathan Corbet, published * by O'Reilly & Associates. No warranty is attached; * we cannot take responsibility for errors or fitness for use. * * $Id: _main.c.in,v 1.21 2004/10/14 20:11:39 corbet Exp $ */ #include <linux/config.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/kernel.h> /* printk() */ #include <linux/slab.h> /* kmalloc() */ #include <linux/fs.h> /* everything... */ #include <linux/errno.h> /* error codes */ #include <linux/types.h> /* size_t */ #include <linux/proc_fs.h> #include <linux/fcntl.h> /* O_ACCMODE */ #include <linux/aio.h> #include <asm/uaccess.h> #include "scullc.h" /* local definitions */ #define INACTIVITY_PERIOD (120*HZ) struct timer_list inact_timer; int scullc_major = SCULLC_MAJOR; int scullc_devs = SCULLC_DEVS; /* number of bare scullc devices */ int scullc_qset = SCULLC_QSET; int scullc_quantum = SCULLC_QUANTUM; module_param(scullc_major, int, 0); module_param(scullc_devs, int, 0); module_param(scullc_qset, int, 0); module_param(scullc_quantum, int, 0); MODULE_AUTHOR("Alessandro Rubini"); MODULE_LICENSE("Dual BSD/GPL"); struct scullc_dev *scullc_devices; /* allocated in scullc_init */ int scullc_trim(struct scullc_dev *dev); void scullc_cleanup(void); /* declare one cache pointer: use it for all devices */ kmem_cache_t *scullc_cache; void modify_timer(unsigned long unused) { int mod_result = -1; // mod_result= mod_timer(&(inact_timer), jiffies+INACTIVITY_PERIOD); printk("\n timer expired mod_result is %d\n",mod_result); } #ifdef SCULLC_USE_PROC /* don't waste space if unused */ /* * The proc filesystem: function to read and entry */ void scullc_proc_offset(char *buf, char **start, off_t *offset, int *len) { if (*offset == 0) return; if (*offset >= *len) { /* Not there yet */ *offset -= *len; *len = 0; } else { /* We're into the interesting stuff now */ *start = buf + *offset; *offset = 0; } } /* FIXME: Do we need this here?? It be ugly */ int scullc_read_procmem(char *buf, char **start, off_t offset, int count, int *eof, void *data) { int i, j, quantum, qset, len = 0; int limit = count - 80; /* Don't print more than this */ struct scullc_dev *d; *start = buf; for(i = 0; i < scullc_devs; i++) { d = &scullc_devices[i]; if (down_interruptible (&d->sem)) return -ERESTARTSYS; qset = d->qset; /* retrieve the features of each device */ quantum=d->quantum; len += sprintf(buf+len,"\nDevice %i: qset %i, quantum %i, sz %li\n", i, qset, quantum, (long)(d->size)); for (; d; d = d->next) { /* scan the list */ len += sprintf(buf+len," item at %p, qset at %p\n",d,d->data); scullc_proc_offset (buf, start, &offset, &len); if (len > limit) goto out; if (d->data && !d->next) /* dump only the last item - save space */ for (j = 0; j < qset; j++) { if (d->data[j]) len += sprintf(buf+len," % 4i:%8p\n",j,d->data[j]); scullc_proc_offset (buf, start, &offset, &len); if (len > limit) goto out; } } out: up (&scullc_devices[i].sem); if (len > limit) break; } *eof = 1; return len; } #endif /* SCULLC_USE_PROC */ /* * Open and close */ int scullc_open (struct inode *inode, struct file *filp) { struct scullc_dev *dev; /* device information */ int line = 0; /* Find the device */ dev = container_of(inode->i_cdev, struct scullc_dev, cdev); /* now trim to 0 the length of the device if open was write-only */ if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) { if (down_interruptible (&dev->sem)) return -ERESTARTSYS; scullc_trim(dev); /* ignore errors */ up (&dev->sem); } /* and use filp->private_data to point to the device data */ filp->private_data = dev; init_timer(&(inact_timer)); inact_timer.data = (unsigned long)line; inact_timer.function = modify_timer; inact_timer.expires = jiffies+INACTIVITY_PERIOD; add_timer(&(inact_timer)); return 0; /* success */ } int scullc_release (struct inode *inode, struct file *filp) { return 0; } /* * Follow the list */ struct scullc_dev *scullc_follow(struct scullc_dev *dev, int n) { while (n--) { if (!dev->next) { dev->next = kmalloc(sizeof(struct scullc_dev), GFP_KERNEL); memset(dev->next, 0, sizeof(struct scullc_dev)); } dev = dev->next; continue; } return dev; } /* * Data management: read and write */ ssize_t scullc_read (struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct scullc_dev *dev = filp->private_data; /* the first listitem */ struct scullc_dev *dptr; int quantum = dev->quantum; int qset = dev->qset; int itemsize = quantum * qset; /* how many bytes in the listitem */ int item, s_pos, q_pos, rest; ssize_t retval = 0; int mod_result = -1; mod_result= mod_timer(&(inact_timer), jiffies+INACTIVITY_PERIOD); printk("\nmod_result is %d\n",mod_result); return mod_result; if (down_interruptible (&dev->sem)) return -ERESTARTSYS; if (*f_pos > dev->size) goto nothing; if (*f_pos + count > dev->size) count = dev->size - *f_pos; /* find listitem, qset index, and offset in the quantum */ item = ((long) *f_pos) / itemsize; rest = ((long) *f_pos) % itemsize; s_pos = rest / quantum; q_pos = rest % quantum; /* follow the list up to the right position (defined elsewhere) */ dptr = scullc_follow(dev, item); if (!dptr->data) goto nothing; /* don't fill holes */ if (!dptr->data[s_pos]) goto nothing; if (count > quantum - q_pos) count = quantum - q_pos; /* read only up to the end of this quantum */ if (copy_to_user (buf, dptr->data[s_pos]+q_pos, count)) { retval = -EFAULT; goto nothing; } up (&dev->sem); *f_pos += count; return count; nothing: up (&dev->sem); return retval; } ssize_t scullc_write (struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct scullc_dev *dev = filp->private_data; struct scullc_dev *dptr; int quantum = dev->quantum; int qset = dev->qset; int itemsize = quantum * qset; int item, s_pos, q_pos, rest; ssize_t retval = -ENOMEM; /* our most likely error */ int mod_result = -1; mod_result= mod_timer(&(inact_timer), jiffies+INACTIVITY_PERIOD); printk("\nmod_result is %d\n",mod_result); return mod_result; if (down_interruptible (&dev->sem)) return -ERESTARTSYS; /* find listitem, qset index and offset in the quantum */ item = ((long) *f_pos) / itemsize; rest = ((long) *f_pos) % itemsize; s_pos = rest / quantum; q_pos = rest % quantum; /* follow the list up to the right position */ dptr = scullc_follow(dev, item); if (!dptr->data) { dptr->data = kmalloc(qset * sizeof(void *), GFP_KERNEL); if (!dptr->data) goto nomem; memset(dptr->data, 0, qset * sizeof(char *)); } /* Allocate a quantum using the memory cache */ if (!dptr->data[s_pos]) { dptr->data[s_pos] = kmem_cache_alloc(scullc_cache, GFP_KERNEL); if (!dptr->data[s_pos]) goto nomem; memset(dptr->data[s_pos], 0, scullc_quantum); } if (count > quantum - q_pos) count = quantum - q_pos; /* write only up to the end of this quantum */ if (copy_from_user (dptr->data[s_pos]+q_pos, buf, count)) { retval = -EFAULT; goto nomem; } *f_pos += count; /* update the size */ if (dev->size < *f_pos) dev->size = *f_pos; up (&dev->sem); return count; nomem: up (&dev->sem); return retval; } /* * The ioctl() implementation */ int scullc_ioctl (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { int err = 0, ret = 0, tmp; /* don't even decode wrong cmds: better returning ENOTTY than EFAULT */ if (_IOC_TYPE(cmd) != SCULLC_IOC_MAGIC) return -ENOTTY; if (_IOC_NR(cmd) > SCULLC_IOC_MAXNR) return -ENOTTY; /* * the type is a bitmask, and VERIFY_WRITE catches R/W * transfers. Note that the type is user-oriented, while * verify_area is kernel-oriented, so the concept of "read" and * "write" is reversed */ if (_IOC_DIR(cmd) & _IOC_READ) err = !access_ok(VERIFY_WRITE, (void __user *)arg, _IOC_SIZE(cmd)); else if (_IOC_DIR(cmd) & _IOC_WRITE) err = !access_ok(VERIFY_READ, (void __user *)arg, _IOC_SIZE(cmd)); if (err) return -EFAULT; switch(cmd) { case SCULLC_IOCRESET: scullc_qset = SCULLC_QSET; scullc_quantum = SCULLC_QUANTUM; break; case SCULLC_IOCSQUANTUM: /* Set: arg points to the value */ ret = __get_user(scullc_quantum, (int __user *) arg); break; case SCULLC_IOCTQUANTUM: /* Tell: arg is the value */ scullc_quantum = arg; break; case SCULLC_IOCGQUANTUM: /* Get: arg is pointer to result */ ret = __put_user (scullc_quantum, (int __user *) arg); break; case SCULLC_IOCQQUANTUM: /* Query: return it (it's positive) */ return scullc_quantum; case SCULLC_IOCXQUANTUM: /* eXchange: use arg as pointer */ tmp = scullc_quantum; ret = __get_user(scullc_quantum, (int __user *) arg); if (ret == 0) ret = __put_user(tmp, (int __user *) arg); break; case SCULLC_IOCHQUANTUM: /* sHift: like Tell + Query */ tmp = scullc_quantum; scullc_quantum = arg; return tmp; case SCULLC_IOCSQSET: ret = __get_user(scullc_qset, (int __user *) arg); break; case SCULLC_IOCTQSET: scullc_qset = arg; break; case SCULLC_IOCGQSET: ret = __put_user(scullc_qset, (int __user *)arg); break; case SCULLC_IOCQQSET: return scullc_qset; case SCULLC_IOCXQSET: tmp = scullc_qset; ret = __get_user(scullc_qset, (int __user *)arg); if (ret == 0) ret = __put_user(tmp, (int __user *)arg); break; case SCULLC_IOCHQSET: tmp = scullc_qset; scullc_qset = arg; return tmp; default: /* redundant, as cmd was checked against MAXNR */ return -ENOTTY; } return ret; } /* * The "extended" operations */ loff_t scullc_llseek (struct file *filp, loff_t off, int whence) { struct scullc_dev *dev = filp->private_data; long newpos; switch(whence) { case 0: /* SEEK_SET */ newpos = off; break; case 1: /* SEEK_CUR */ newpos = filp->f_pos + off; break; case 2: /* SEEK_END */ newpos = dev->size + off; break; default: /* can't happen */ return -EINVAL; } if (newpos<0) return -EINVAL; filp->f_pos = newpos; return newpos; } /* * A simple asynchronous I/O implementation. */ struct async_work { struct kiocb *iocb; int result; struct work_struct work; }; /* * "Complete" an asynchronous operation. */ static void scullc_do_deferred_op(void *p) { struct async_work *stuff = (struct async_work *) p; aio_complete(stuff->iocb, stuff->result, 0); kfree(stuff); } static int scullc_defer_op(int write, struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) { struct async_work *stuff; int result; /* Copy now while we can access the buffer */ if (write) result = scullc_write(iocb->ki_filp, buf, count, &pos); else result = scullc_read(iocb->ki_filp, buf, count, &pos); /* If this is a synchronous IOCB, we return our status now. */ if (is_sync_kiocb(iocb)) return result; /* Otherwise defer the completion for a few milliseconds. */ stuff = kmalloc (sizeof (*stuff), GFP_KERNEL); if (stuff == NULL) return result; /* No memory, just complete now */ stuff->iocb = iocb; stuff->result = result; INIT_WORK(&stuff->work, scullc_do_deferred_op, stuff); schedule_delayed_work(&stuff->work, HZ/100); return -EIOCBQUEUED; } static ssize_t scullc_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) { return scullc_defer_op(0, iocb, buf, count, pos); } static ssize_t scullc_aio_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos) { return scullc_defer_op(1, iocb, (char __user *) buf, count, pos); } /* * The fops */ struct file_operations scullc_fops = { .owner = THIS_MODULE, .llseek = scullc_llseek, .read = scullc_read, .write = scullc_write, .ioctl = scullc_ioctl, .open = scullc_open, .release = scullc_release, .aio_read = scullc_aio_read, .aio_write = scullc_aio_write, }; int scullc_trim(struct scullc_dev *dev) { struct scullc_dev *next, *dptr; int qset = dev->qset; /* "dev" is not-null */ int i; if (dev->vmas) /* don't trim: there are active mappings */ return -EBUSY; for (dptr = dev; dptr; dptr = next) { /* all the list items */ if (dptr->data) { for (i = 0; i < qset; i++) if (dptr->data[i]) kmem_cache_free(scullc_cache, dptr->data[i]); kfree(dptr->data); dptr->data=NULL; } next=dptr->next; if (dptr != dev) kfree(dptr); /* all of them but the first */ } dev->size = 0; dev->qset = scullc_qset; dev->quantum = scullc_quantum; dev->next = NULL; return 0; } static void scullc_setup_cdev(struct scullc_dev *dev, int index) { int err, devno = MKDEV(scullc_major, index); cdev_init(&dev->cdev, &scullc_fops); dev->cdev.owner = THIS_MODULE; dev->cdev.ops = &scullc_fops; err = cdev_add (&dev->cdev, devno, 1); /* Fail gracefully if need be */ if (err) printk(KERN_NOTICE "Error %d adding scull%d", err, index); } /* * Finally, the module stuff */ int scullc_init(void) { int result, i; dev_t dev = MKDEV(scullc_major, 0); /* * Register your major, and accept a dynamic number. */ if (scullc_major) result = register_chrdev_region(dev, scullc_devs, "scullc"); else { result = alloc_chrdev_region(&dev, 0, scullc_devs, "scullc"); scullc_major = MAJOR(dev); } if (result < 0) return result; /* * allocate the devices -- we can't have them static, as the number * can be specified at load time */ scullc_devices = kmalloc(scullc_devs*sizeof (struct scullc_dev), GFP_KERNEL); if (!scullc_devices) { result = -ENOMEM; goto fail_malloc; } memset(scullc_devices, 0, scullc_devs*sizeof (struct scullc_dev)); for (i = 0; i < scullc_devs; i++) { scullc_devices[i].quantum = scullc_quantum; scullc_devices[i].qset = scullc_qset; sema_init (&scullc_devices[i].sem, 1); scullc_setup_cdev(scullc_devices + i, i); } scullc_cache = kmem_cache_create("scullc", scullc_quantum, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); /* no ctor/dtor */ if (!scullc_cache) { scullc_cleanup(); return -ENOMEM; } #ifdef SCULLC_USE_PROC /* only when available */ create_proc_read_entry("scullcmem", 0, NULL, scullc_read_procmem, NULL); #endif return 0; /* succeed */ fail_malloc: unregister_chrdev_region(dev, scullc_devs); return result; } void scullc_cleanup(void) { int i; #ifdef SCULLC_USE_PROC remove_proc_entry("scullcmem", NULL); #endif for (i = 0; i < scullc_devs; i++) { cdev_del(&scullc_devices[i].cdev); scullc_trim(scullc_devices + i); } kfree(scullc_devices); if (scullc_cache) kmem_cache_destroy(scullc_cache); unregister_chrdev_region(MKDEV (scullc_major, 0), scullc_devs); } module_init(scullc_init); module_exit(scullc_cleanup);